Stable limit cycles in an intraguild predation model with general functional responses

被引:4
|
作者
Ble, Gamaliel [1 ]
Castellanos, Victor [1 ]
Loreto Hernandez, Ivan [2 ]
机构
[1] Univ Juarez Autonoma Tabasco, Div Acad Ciencias Basicas, Km 1,Carretera Cunduacan Jalpa Mendez, Villahermosa 86690, Tabasco, Mexico
[2] Univ Juarez Autonoma Tabasco, Consejo Nacl Ciencia & Tecnol, Div Acad Ciencias Basicas, Villahermosa, Tabasco, Mexico
关键词
Bautin bifurcation; Hopf bifurcation; intraguild predation model; limit cycle; HOPF-BIFURCATION; STABILITY; DYNAMICS;
D O I
10.1002/mma.7921
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The conditions to have a stable limit set in the positive octant for an intraguild predation model are given, considering a general family of functional responses for the predators and a wide range of growth rate functions for the prey. The limit sets are obtained by Hopf or Bautin bifurcation. The results obtained in previous works about intraguild predation models, which consider logistic growth rate for the prey and Holling functional responses, are generalized.
引用
收藏
页码:2219 / 2233
页数:15
相关论文
共 50 条
  • [21] Limit cycles in a food-chain with inhibition responses
    Zhu, Lemin
    Wang, Siyuan
    Huang, Xuncheng
    Villasana, Minaya
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (05) : 3082 - 3090
  • [22] A mathematical model of intraguild predation with prey switching
    Wei, Hsiu-Chuan
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2019, 165 : 107 - 118
  • [23] Dynamics of an intraguild predation model with an adaptive IGpredator
    Wang, Xiaoli
    Zhang, Guohong
    Lai, Ju
    MATHEMATICAL BIOSCIENCES, 2018, 302 : 19 - 26
  • [24] The Dynamics of an Intraguild Predation Model with Prey Switching
    Wei, Hsiu-Chuan
    Chen, Yuh-Yih
    Lin, Jenn-Tsann
    Hwang, Shin-Feng
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [25] Spatiotemporal patterns induced by delay and cross-fractional diffusion in a predator-prey model describing intraguild predation
    Ma, Zhan-Ping
    Huo, Hai-Feng
    Xiang, Hong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (08) : 5179 - 5196
  • [26] Competitive exclusion and coexistence in an intraguild predation model with Beddington-DeAngelis functional response
    Ji, Juping
    Wang, Lin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 107
  • [27] On the limit cycles of a quartic model for Evolutionary Stable Strategies
    Gasull, Armengol
    Gouveia, Luiz F. S.
    Santana, Paulo
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 84
  • [28] The limit cycles of a general Kolmogorov system
    Yuan, Yueding
    Chen, Haibo
    Du, Chaoxiong
    Yuan, Yuejin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 392 (02) : 225 - 237
  • [29] SPATIAL MEMORY DRIVES SPATIOTEMPORAL PATTERNS IN A PREDATOR-PREY MODEL DESCRIBING INTRAGUILD PREDATION
    Pu, Xiaoyan
    Zhang, Guohong
    Wang, Xiaoli
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (05): : 2368 - 2381
  • [30] Pattern formation in a diffusive intraguild predation model with nonlocal interaction effects
    Han, Renji
    Dai, Binxiang
    Chen, Yuming
    AIP ADVANCES, 2019, 9 (03)