Pulmonary CT Images Segmentation using CNN and UNet Models of Deep Learning

被引:7
|
作者
Shaziya, Humera [1 ]
Shyamala, K. [1 ]
机构
[1] Osmania Univ, UCE, Dept CSE, Hyderabad, India
来源
2020 IEEE PUNE SECTION INTERNATIONAL CONFERENCE (PUNECON) | 2020年
关键词
Pulmonary Image Segmentation; UNet Model; Convolutional Neural Networks Model; Deep Learning; Medical Imaging; AUTOMATIC LUNG SEGMENTATION;
D O I
10.1109/PuneCon50868.2020.9362463
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image Segmentation performs segregation of distinct segments of an image. Lung segmentation separate different elements of thoracic region. It is an essential prerequisite to several analysis tasks performed on the Computed Tomography (CT) images of lungs. Computational complexity is greatly reduced only when the required area is segregated from the entire CT image. Automated segmentation facilitates quick processing since it requires relatively less time to process more images. Conventional computer based segmentation methods require extensive support for determining the features. Users develop the features and provide to the system which then utilize those features to delineate the required regions. Recent advancements in deep learning showed optimal results in solving numerous image recognition and segmentation problems. The significant characteristic of deep learning is that the model itself learns the features from the input images and then apply the learned features to process new images. The most successful model of deep learning is Convolutional Neural Network (CNN) has outperformed earlier techniques for image recognition, object and face detection and is considered to be the most successful architecture of deep learning. CNN has also been applied for segmentation tasks. In this proposed work, CNN and UNet models have been implemented to evaluate the processing of medical images. The focus of the work is on CT images of lungs. Results obtained on the lungs dataset of 267 images on CNN is 81.34% and UNet is 82.61%. Thus U-Net has improved the dice coefficient by 1.27%. The experiments show that UNet model outperforms CNN model to segment the lung fields in CT images.
引用
收藏
页码:195 / 201
页数:7
相关论文
共 50 条
  • [41] Automatic modulation recognition using CNN deep learning models
    Saeed Mohsen
    Anas M. Ali
    Ahmed Emam
    Multimedia Tools and Applications, 2024, 83 : 7035 - 7056
  • [42] Logo Detection Using Deep Learning with Pretrained CNN Models
    Sahel, Salma
    Alsahafi, Mashael
    Alghamdi, Manal
    Alsubait, Tahani
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2021, 11 (01) : 6724 - 6729
  • [43] Comparison of Deep-Learning-Based Segmentation Models: Using Top View Person Images
    Ahmed, Imran
    Ahmad, Misbah
    Khan, Fakhri Alam
    Asif, Muhammad
    IEEE ACCESS, 2020, 8 : 136361 - 136373
  • [44] EfficientNet family U-Net models for deep learning semantic segmentation of kidney tumors on CT images
    Abdelrahman, Abubaker
    Viriri, Serestina
    FRONTIERS IN COMPUTER SCIENCE, 2023, 5
  • [45] Early Detection of Lung Cancer from CT Images: Nodule Segmentation and Classification Using Deep Learning
    Sharma, Manu
    Bhatt, Jignesh S.
    Joshi, Manjunath V.
    TENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2017), 2018, 10696
  • [46] Automatic Segmentation of Multiple Organs on 3D CT Images by Using Deep Learning Approaches
    Zhou, Xiangrong
    DEEP LEARNING IN MEDICAL IMAGE ANALYSIS: CHALLENGES AND APPLICATIONS, 2020, 1213 : 135 - 147
  • [47] Segmentation of Nucleus in Histopathological Images Using Deep Learning Architectures
    Ayaz, Ogun
    Usta, Hamdullah
    Bilgin, Gokhan
    TIP TEKNOLOJILERI KONGRESI (TIPTEKNO'21), 2021,
  • [48] Skin Lesion Segmentation in Clinical Images Using Deep Learning
    Jafari, M. H.
    Karimi, N.
    Nasr-Esfahani, E.
    Samavi, S.
    Soroushmehr, S. M. R.
    Ward, K.
    Najarian, K.
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 337 - 342
  • [49] Melanoma Segmentation and Classification in Clinical Images Using Deep Learning
    Ge, Yunhao
    Li, Bin
    Zhao, Yanzheng
    Guan, Enguang
    Yan, Weixin
    PROCEEDINGS OF 2018 10TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING (ICMLC 2018), 2018, : 252 - 256
  • [50] Semantic segmentation of multispectral photoacoustic images using deep learning
    Schellenberg, Melanie
    Dreher, Kris K.
    Holzwarth, Niklas
    Isensee, Fabian
    Reinke, Annika
    Schreck, Nicholas
    Seitel, Alexander
    Tizabi, Minu D.
    Maier-Hein, Lena
    Groehl, Janek
    PHOTOACOUSTICS, 2022, 26