Pulmonary CT Images Segmentation using CNN and UNet Models of Deep Learning

被引:7
|
作者
Shaziya, Humera [1 ]
Shyamala, K. [1 ]
机构
[1] Osmania Univ, UCE, Dept CSE, Hyderabad, India
来源
2020 IEEE PUNE SECTION INTERNATIONAL CONFERENCE (PUNECON) | 2020年
关键词
Pulmonary Image Segmentation; UNet Model; Convolutional Neural Networks Model; Deep Learning; Medical Imaging; AUTOMATIC LUNG SEGMENTATION;
D O I
10.1109/PuneCon50868.2020.9362463
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image Segmentation performs segregation of distinct segments of an image. Lung segmentation separate different elements of thoracic region. It is an essential prerequisite to several analysis tasks performed on the Computed Tomography (CT) images of lungs. Computational complexity is greatly reduced only when the required area is segregated from the entire CT image. Automated segmentation facilitates quick processing since it requires relatively less time to process more images. Conventional computer based segmentation methods require extensive support for determining the features. Users develop the features and provide to the system which then utilize those features to delineate the required regions. Recent advancements in deep learning showed optimal results in solving numerous image recognition and segmentation problems. The significant characteristic of deep learning is that the model itself learns the features from the input images and then apply the learned features to process new images. The most successful model of deep learning is Convolutional Neural Network (CNN) has outperformed earlier techniques for image recognition, object and face detection and is considered to be the most successful architecture of deep learning. CNN has also been applied for segmentation tasks. In this proposed work, CNN and UNet models have been implemented to evaluate the processing of medical images. The focus of the work is on CT images of lungs. Results obtained on the lungs dataset of 267 images on CNN is 81.34% and UNet is 82.61%. Thus U-Net has improved the dice coefficient by 1.27%. The experiments show that UNet model outperforms CNN model to segment the lung fields in CT images.
引用
收藏
页码:195 / 201
页数:7
相关论文
共 50 条
  • [21] Segmentation of seagrass blade images using deep learning
    Mehrubeoglu, Mehrube
    Vargas, Isaac
    Huang, Chi
    Cammarata, Kirk
    REAL-TIME IMAGE PROCESSING AND DEEP LEARNING 2021, 2021, 11736
  • [22] Blood Cell Images Segmentation using Deep Learning Semantic Segmentation
    Thanh Tran
    Kwon, Oh-Heum
    Kwon, Ki-Ryong
    Lee, Suk-Hwan
    Kang, Kyung-Won
    2018 IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION ENGINEERING (ICECE 2018), 2018, : 13 - 16
  • [23] Computer-Aided Diagnosis of Pulmonary Fibrosis Using Deep Learning and CT Images
    Christe, Andreas
    Peters, Alan A.
    Drakopoulos, Dionysios
    Heverhagen, Johannes T.
    Geiser, Thomas
    Stathopoulou, Thomai
    Christodoulidis, Stergios
    Anthimopoulos, Marios
    Mougiakakou, Stavroula G.
    Ebner, Lukas
    INVESTIGATIVE RADIOLOGY, 2019, 54 (10) : 627 - 632
  • [24] Predicting Malignancy and Invasiveness of Pulmonary Subsolid Nodules on CT Images Using Deep Learning
    Shen, Tianle
    Hou, Runping
    Ye, Xiaodan
    Li, Xiaoyang
    Xiong, Junfeng
    Zhang, Qin
    Zhang, Chenchen
    Cai, Xuwei
    Yu, Wen
    Zhao, Jun
    Fu, Xiaolong
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [25] Segmentation of Clinical Target Volume From CT Images for Cervical Cancer Using Deep Learning
    Huang, Mingxu
    Feng, Chaolu
    Sun, Deyu
    Cui, Ming
    Zhao, Dazhe
    TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2023, 22
  • [26] Interactive segmentation of medical images using deep learning
    Zhao, Xiaoran
    Pan, Haixia
    Bai, Wenpei
    Li, Bin
    Wang, Hongqiang
    Zhang, Meng
    Li, Yanan
    Zhang, Dongdong
    Geng, Haotian
    Chen, Minghuang
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (04)
  • [27] Segmentation of Clinical Target Volume From CT Images for Cervical Cancer Using Deep Learning
    Huang, Mingxu
    Feng, Chaolu
    Sun, Deyu
    Cui, Ming
    Zhao, Dazhe
    TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2023, 22
  • [28] Automated segmentation of insect anatomy from micro-CT images using deep learning
    Toulkeridou, Evropi
    Gutierrez, Carlos Enrique
    Baum, Daniel
    Doya, Kenji
    Economo, Evan P.
    NATURAL SCIENCES, 2023, 3 (04):
  • [29] Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion
    Ma, Ling
    Guo, Rongrong
    Zhang, Guoyi
    Tade, Funmilayo
    Schuster, David M.
    Nieh, Peter
    Master, Viraj
    Fei, Baowei
    MEDICAL IMAGING 2017: IMAGE PROCESSING, 2017, 10133
  • [30] Automated Segmentation of Whole Cardiac CT Images based on Deep Learning
    Ahmed, Rajpar Suhail
    Liu, Jie
    Tunio, Muhammad Zahid
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (04) : 466 - 473