Fractional Hammerstein system identification using polynomial non-linear state space model

被引:0
作者
Hammar, Karima [1 ]
Djamah, Tounsia [2 ]
Bettayeb, Maamar [3 ]
机构
[1] Univ M Mammeri Tizi Ouzou UMMTO, L2CSP, Tizi Ouzou, Algeria
[2] UMMTO, L2CSP, Tizi Ouzou, Algeria
[3] Univ Sharjah, Dept Elect & Comp Engn, Sharjah, U Arab Emirates
来源
3RD INTERNATIONAL CONFERENCE ON CONTROL, ENGINEERING & INFORMATION TECHNOLOGY (CEIT 2015) | 2015年
关键词
Non-linear Hammerstein model; fractional order system; identification; polynomial non-linear state space model; output error method; ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fractional systems are known to model complex dynamics with a reduced number of parameters. This paper deals with identification of discrete fractional order systems based on non-linear Hammerstein models. Such systems consist of a static non-linear block followed by a linear dynamic system. The polynomial non-linear state space equations (PNLSS) are used to represent the fractional Hammerstein system and an output error identification method is developed. Different simulations test the method fitting ability to approximate the non linear fractional system behaviour at various signal to noise ratios.
引用
收藏
页数:6
相关论文
共 46 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION
[2]  
[Anonymous], P 2 IFAC WORKSH FRAC
[3]  
[Anonymous], 2009, IFAC P VOLUMES, DOI [DOI 10.3182/20090706-3-FR-2004.00179, 10.3182/20090706-3-FR-2004.00179]
[4]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[5]  
[Anonymous], 1974, The fractional calculus theory and applications of differentiation and integration to arbitrary order, DOI DOI 10.1016/S0076-5392(09)60219-8
[6]  
[Anonymous], 2006, P 2 IFAC WORKSH FRAC
[7]   Convergence of the iterative Hammerstein system identification algorithm [J].
Bai, EW ;
Li, D .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (11) :1929-1940
[8]   A blind approach to the Hammerstein-Wiener model identification [J].
Bai, EW .
AUTOMATICA, 2002, 38 (06) :967-979
[9]   An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems [J].
Bai, EW .
AUTOMATICA, 1998, 34 (03) :333-338
[10]   NONITERATIVE METHOD FOR IDENTIFICATION USING HAMMERSTEIN MODEL [J].
CHANG, FHI ;
LUUS, R .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1971, AC16 (05) :464-+