The Mobius function of partitions with restricted block sizes

被引:10
作者
Ehrenborg, Richard [1 ]
Readdy, Margaret A. [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
euler and tangent numbers; descent set statistic; set partition lattice; r-divisible partition lattice; knapsack partitions; permutahedron;
D O I
10.1016/j.aam.2006.08.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to compute the Mobius function of filters in the partition lattice formed by restricting to partitions by type. The Mobius function is determined in terms of the descent set statistics on permutations and the Mobius function of filters in the lattice of integer compositions. When the underlying integer partition is a knapsack partition, the Mobius function on integer compositions is determined by a topological argument. In this proof the permutahedron makes a cameo appearance. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:283 / 292
页数:10
相关论文
共 10 条
[1]  
BILLERA LJ, 1996, DIMACS SER DISCRETE
[2]   Shellable nonpure complexes and posets .1. [J].
Bjorner, A ;
Wachs, ML .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (04) :1299-1327
[3]  
Bjorner A., 1993, ORIENTED MATROIDS
[4]  
CALDERBANK AR, 1986, P LOND MATH SOC, V53, P288
[5]  
EHRENBORG R, 2005, EXPONENTIAL DOWLING
[6]  
Stanley R., 1986, ENUMERATIVE COMBINAT, V1
[7]  
Stanley R.P., 1999, Enumerative Combinatorics, V2
[8]  
STANLEY RP, 1978, STUD APPL MATH, V59, P73
[9]  
Sylvester G.S., 1976, THESIS MIT
[10]   A basis for the homology of the d-divisible partition lattice [J].
Wachs, ML .
ADVANCES IN MATHEMATICS, 1996, 117 (02) :294-318