Uncovering axes of variation among single-cell cancer specimens

被引:30
作者
Chen, William S. [1 ]
Zivanovic, Nevena [2 ]
van Dijk, David [3 ]
Wolf, Guy [4 ]
Bodenmiller, Bernd [2 ]
Krishnaswamy, Smita [1 ,3 ]
机构
[1] Yale Sch Med, Dept Genet, New Haven, CT 06510 USA
[2] Univ Zurich, Inst Mol Life Sci, Zurich, Switzerland
[3] Yale Univ, Dept Comp Sci, POB 2158, New Haven, CT 06520 USA
[4] Univ Montreal, Dept Math & Stat, Montreal, PQ, Canada
基金
瑞士国家科学基金会; 美国国家卫生研究院; 欧洲研究理事会;
关键词
EARTH MOVERS DISTANCE; TRAJECTORIES; PROGRESSION; MIGRATION; CORRELATE; CD44;
D O I
10.1038/s41592-019-0689-z
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
While several tools have been developed to map axes of variation among individual cells, no analogous approaches exist for identifying axes of variation among multicellular biospecimens profiled at single-cell resolution. For this purpose, we developed 'phenotypic earth mover's distance' (PhEMD). PhEMD is a general method for embedding a 'manifold of manifolds', in which each datapoint in the higher-level manifold (of biospecimens) represents a collection of points that span a lower-level manifold (of cells). We apply PhEMD to a newly generated drug-screen dataset and demonstrate that PhEMD uncovers axes of cell subpopulational variation among a large set of perturbation conditions. Moreover, we show that PhEMD can be used to infer the phenotypes of biospecimens not directly profiled. Applied to clinical datasets, PhEMD generates a map of the patient-state space that highlights sources of patient-to-patient variation. PhEMD is scalable, compatible with leading batch-effect correction techniques and generalizable to multiple experimental designs. Phenotypic earth mover's distance (PhEMD) facilitates the comparison of single-cell experimental conditions, each of which is a high-dimensional dataset, and identifies axes of variation among multicellular biospecimens.
引用
收藏
页码:302 / +
页数:13
相关论文
共 57 条
[1]  
Alpert A, 2018, NAT METHODS, V15, P267, DOI [10.1038/NMETH.4628, 10.1038/nmeth.4628]
[2]   EMT: 2016 [J].
Angela Nieto, M. ;
Huang, Ruby Yun-Ju ;
Jackson, Rebecca A. ;
Thiery, Jean Paul .
CELL, 2016, 166 (01) :21-45
[3]   destiny: diffusion maps for large-scale single cell data in R [J].
Angerer, Philipp ;
Haghverdi, Laleh ;
Buettner, Maren ;
Theis, Fabian J. ;
Marr, Carsten ;
Buettner, Florian .
BIOINFORMATICS, 2016, 32 (08) :1241-1243
[4]  
[Anonymous], 2004, Advances in Neural Information Processing Systems, DOI DOI 10.5555/2976040.2976138
[5]   Mass Cytometric Functional Profiling of Acute Myeloid Leukemia Defines Cell-Cycle and Immunophenotypic Properties That Correlate with Known Responses to Therapy [J].
Behbehani, Gregory K. ;
Samusik, Nikolay ;
Bjornson, Zach B. ;
Fantl, Wendy J. ;
Medeiros, Bruno C. ;
Nolan, Garry P. .
CANCER DISCOVERY, 2015, 5 (09) :988-1003
[6]   Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development [J].
Bendall, Sean C. ;
Davis, Kara L. ;
Amir, El-ad David ;
Tadmor, Michelle D. ;
Simonds, Erin F. ;
Chen, Tiffany J. ;
Shenfeld, Daniel K. ;
Nolan, Garry P. ;
Pe'er, Dana .
CELL, 2014, 157 (03) :714-725
[7]  
Bengio Y, 2004, ADV NEUR IN, V16, P177
[8]   Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators [J].
Bodenmiller, Bernd ;
Zunder, Eli R. ;
Finck, Rachel ;
Chen, Tiffany J. ;
Savig, Erica S. ;
Bruggner, Robert V. ;
Simonds, Erin F. ;
Bendall, Sean C. ;
Sachs, Karen ;
Krutzik, Peter O. ;
Nolan, Garry P. .
NATURE BIOTECHNOLOGY, 2012, 30 (09) :858-U89
[9]   Integrating single-cell transcriptomic data across different conditions, technologies, and species [J].
Butler, Andrew ;
Hoffman, Paul ;
Smibert, Peter ;
Papalexi, Efthymia ;
Satija, Rahul .
NATURE BIOTECHNOLOGY, 2018, 36 (05) :411-+
[10]   An Immune Atlas of Clear Cell Renal Cell Carcinoma [J].
Chevrier, Stephane ;
Levine, Jacob Harrison ;
Zanotelli, Vito Riccardo Tomaso ;
Silina, Karina ;
Schulz, Daniel ;
Bacac, Marina ;
Ries, Carola Hermine ;
Ailles, Laurie ;
Jewett, Michael Alexander Spencer ;
Moch, Holger ;
van den Broek, Maries ;
Beisel, Christian ;
Stadler, Michael Beda ;
Gedye, Craig ;
Reis, Bernhard ;
Pe'er, Dana ;
Bodenmiller, Bernd .
CELL, 2017, 169 (04) :736-749