Hurst estimation for operator scaling random fields

被引:1
作者
Lee, Jeonghwa [1 ]
机构
[1] Truman State Univ, Dept Stat, Kirksville, MO 63501 USA
关键词
Operator scaling Gaussian random field; Hurst indices; Fractal indices; GAUSSIAN-PROCESSES;
D O I
10.1016/j.spl.2021.109188
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimation method for Hurst indices in operator scaling Gaussian random field is developed. The model used in this paper has two Hurst parameters along the two orthogonal directions. The two directions are estimated first, then Hurst indices are estimated along the estimated directions. The performance of estimator is investigated theoretically and empirically. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 40 条
[31]   Deep Random Splines for Point Process Intensity Estimation of Neural Population Data [J].
Loaiza-Ganem, Gabriel ;
Perkins, Sean M. ;
Schroeder, Karen E. ;
Churchland, Mark M. ;
Cunningham, John P. .
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
[32]   ESTIMATION OF SPATIAL FIELDS OF NLOS/LOS CONDITIONS FOR IMPROVED LOCALIZATION IN INDOOR ENVIRONMENTS [J].
Arias-de-Reyna, Eva ;
Dardari, Davide ;
Closas, Pau ;
Djuric, Petar M. .
2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, :658-662
[33]   LEARNING EXCURSION SETS OF VECTOR-VALUED GAUSSIAN RANDOM FIELDS FOR AUTONOMOUS OCEAN SAMPLING [J].
Fossum, Trygve Olav ;
Travelletti, Cedric ;
Eidsvik, Jo ;
Ginsbourger, David ;
Rajan, Kanna .
ANNALS OF APPLIED STATISTICS, 2021, 15 (02) :597-618
[34]   RECURSIVE ESTIMATION OF TIME-VARYING RSS FIELDS BASED ON CROWDSOURCING AND GAUSSIAN PROCESSES [J].
Santos, Irene ;
Murillo-Fuentes, Juan J. ;
Djuri, Petar M. .
2017 IEEE 7TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2017,
[35]   Change Detection Using High Resolution Remote Sensing Images Based on Active Learning and Markov Random Fields [J].
Yu, Huai ;
Yang, Wen ;
Hua, Guang ;
Ru, Hui ;
Huang, Pingping .
REMOTE SENSING, 2017, 9 (12)
[36]   Spatial prediction with mobile sensor networks using Gaussian processes with built-in Gaussian Markov random fields [J].
Xu, Yunfei ;
Choi, Jongeun .
AUTOMATICA, 2012, 48 (08) :1735-1740
[37]   SPECTRAL ANGLE BASED UNARY ENERGY FUNCTIONS FOR SPATIAL-SPECTRAL HYPERSPECTRAL CLASSIFICATION USING MARKOV RANDOM FIELDS [J].
Gewali, Utsav B. ;
Monteiro, Sildomar T. .
2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
[38]   A class of random fields with two-piece marginal distributions for modeling point-referenced data with spatial outliers [J].
Bevilacqua, Moreno ;
Caamano-Carrillo, Christian ;
Arellano-Valle, Reinaldo B. ;
Gomez, Camilo .
TEST, 2022, 31 (03) :644-674
[39]   Stochastic PDE representation of random fields for large-scale Gaussian process regression and statistical finite element analysis [J].
Koh, Kim Jie ;
Cirak, Fehmi .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 417
[40]   Kernel-Based Impulse Response Estimation With Prior DC Gain Using Built-In Self-Scaling Technique [J].
Tan, Ai Hui ;
Ong, Duu Sheng .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (09) :7295-7305