Hurst estimation for operator scaling random fields

被引:1
作者
Lee, Jeonghwa [1 ]
机构
[1] Truman State Univ, Dept Stat, Kirksville, MO 63501 USA
关键词
Operator scaling Gaussian random field; Hurst indices; Fractal indices; GAUSSIAN-PROCESSES;
D O I
10.1016/j.spl.2021.109188
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimation method for Hurst indices in operator scaling Gaussian random field is developed. The model used in this paper has two Hurst parameters along the two orthogonal directions. The two directions are estimated first, then Hurst indices are estimated along the estimated directions. The performance of estimator is investigated theoretically and empirically. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 40 条
[21]   A Bayesian Framework to Identify Random Parameter Fields Based on the Copula Theorem and Gaussian Fields: Application to Polycrystalline Materials [J].
Rappel, H. ;
Wu, L. ;
Noels, L. ;
Beex, L. A. A. .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2019, 86 (12)
[22]   Nearest neighbors weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation [J].
Caamano-Carrillo, Christian ;
Bevilacqua, Moreno ;
Lopez, Cristian ;
Morales-Onate, Victor .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2024, 191
[23]   Lp uniform random walk-type approximation for Fractional Brownian motion with Hurst exponent 0 < H < 1/2 [J].
Ohashi, Alberto ;
de Souza, Francys A. .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2020, 25 :1-13
[24]   The Connection Between Bayesian Estimation of a Gaussian Random Field and RKHS [J].
Aravkin, Aleksandr Y. ;
Bell, Bradley M. ;
Burke, James V. ;
Pillonetto, Gianluigi .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (07) :1518-1524
[25]   Adaptive estimation of external fields in reproducing kernel Hilbert spaces [J].
Guo, Jia ;
Kepler, Michael E. ;
Tej Paruchuri, Sai ;
Wang, Hoaran ;
Kurdila, Andrew J. ;
Stilwell, Daniel J. .
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2022, 36 (08) :1931-1957
[26]   Kriging for Hilbert-space valued random fields: The operatorial point of view [J].
Menafoglio, Alessandra ;
Petris, Giovanni .
JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 146 :84-94
[27]   Simulation of multi-dimensional random fields by Karhunen-Loeve expansion [J].
Zheng, Zhibao ;
Dai, Hongzhe .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 324 :221-247
[28]   Impulse Response Estimation Using Online Built-In Self-Scaling Method [J].
Tan, Ai Hui .
IFAC PAPERSONLINE, 2022, 55 (01) :327-332
[29]   Spatial models for point and areal data using Markov random fields on a fine grid [J].
Paciorek, Christopher J. .
ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 :946-972
[30]   Approximation of additive random fields based on standard information: Average case and probabilistic settings [J].
Lifshits, Mikhail ;
Zani, Marguerite .
JOURNAL OF COMPLEXITY, 2015, 31 (05) :659-674