Hurst estimation for operator scaling random fields

被引:1
|
作者
Lee, Jeonghwa [1 ]
机构
[1] Truman State Univ, Dept Stat, Kirksville, MO 63501 USA
关键词
Operator scaling Gaussian random field; Hurst indices; Fractal indices; GAUSSIAN-PROCESSES;
D O I
10.1016/j.spl.2021.109188
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimation method for Hurst indices in operator scaling Gaussian random field is developed. The model used in this paper has two Hurst parameters along the two orthogonal directions. The two directions are estimated first, then Hurst indices are estimated along the estimated directions. The performance of estimator is investigated theoretically and empirically. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Parameter estimation for operator scaling random fields
    Lim, C. Y.
    Meerschaert, M. M.
    Scheffler, H. -P.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 123 : 172 - 183
  • [2] Operator scaling stable random fields
    Bierme, Hermine
    Meerschaert, Mark M.
    Scheffler, Hans-Peter
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (03) : 312 - 332
  • [3] Multi-operator scaling random fields
    Bierme, Hermine
    Lacaux, Celine
    Scheffler, Hans-Peter
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (11) : 2642 - 2677
  • [4] Holder regularity for operator scaling stable random fields
    Bierme, Hermine
    Lacaux, Celine
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (07) : 2222 - 2248
  • [5] EXPLICIT CONSTRUCTION OF OPERATOR SCALING GAUSSIAN RANDOM FIELDS
    Clausel, M.
    Vedel, B.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2011, 19 (01) : 101 - 111
  • [6] INVARIANCE PRINCIPLES FOR OPERATOR-SCALING GAUSSIAN RANDOM FIELDS
    Bierme, Hermine
    Durieu, Olivier
    Wang, Yizao
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (02): : 1190 - 1234
  • [7] Operator-scaling Gaussian random fields via aggregation
    Shen, Yi
    Wang, Yizao
    BERNOULLI, 2020, 26 (01) : 500 - 530
  • [8] PIECEWISE PARAMETERISED MARKOV RANDOM FIELDS FOR SEMI-LOCAL HURST ESTIMATION
    Regli, J-B.
    Nelson, J. D. B.
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 1626 - 1630
  • [9] Application of operator-scaling anisotropic random fields to binary mixtures
    Anders, Denis
    Hoffmann, Alexander
    Scheffler, Hans-Peter
    Weinberg, Kerstin
    PHILOSOPHICAL MAGAZINE, 2011, 91 (29) : 3766 - 3792
  • [10] Fast and exact synthesis of some operator scaling Gaussian random fields
    Bierme, Hermine
    Lacaux, Celine
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (01) : 293 - 320