Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells

被引:216
作者
Song, Bo [1 ]
Wang, Yuan [1 ,3 ]
Titmus, Matthew A. [1 ]
Botchkina, Galina [2 ]
Formentini, Andrea [4 ]
Kornmann, Marko [4 ]
Ju, Jingfang [1 ]
机构
[1] SUNY Stony Brook, Dept Pathol, Sch Med, Translat Res Lab, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Sch Med, Dept Surg, Stony Brook, NY 11794 USA
[3] Wuhan Univ, Wuhan 430072, Peoples R China
[4] Univ Ulm, Dept Gen Visceral & Transplantat Surg, D-89075 Ulm, Germany
关键词
THYMIDYLATE SYNTHASE EXPRESSION; MATRIX-ASSOCIATED PROTEIN; TUMOR-SUPPRESSOR NETWORK; MESSENGER-RNA; GENE-EXPRESSION; STEM-CELLS; REGULATED NUCLEAR; TRANSLATIONAL REGULATION; DIHYDROFOLATE-REDUCTASE; COLORECTAL-CANCER;
D O I
10.1186/1476-4598-9-96
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Translational control mediated by non-coding microRNAs ( miRNAs) plays a key role in the mechanism of cellular resistance to anti-cancer drug treatment. Dihydrofolate reductase ( DHFR) and thymidylate synthase (TYMS, TS) are two of the most important targets for antifolate- and fluoropyrimidine-based chemotherapies in the past 50 years. In this study, we investigated the roles of miR-215 in the chemoresistance to DHFR inhibitor methotrexate (MTX) and TS inhibitor Tomudex (TDX). Results: The protein levels of both DHFR and TS were suppressed by miR-215 without the alteration of the target mRNA transcript levels. Interestingly, despite the down-regulation of DHFR and TS proteins, ectopic expression of miR-215 resulted in a decreased sensitivity to MTX and TDX. Paradoxically, gene-specific small-interfering RNAs (siRNAs) against DHFR or TS had the opposite effect, increasing sensitivity to MTX and TDX. Further studies revealed that overexpression of miR-215 inhibited cell proliferation and triggered cell cycle arrest at G2 phase, and that this effect was accompanied by a p53-dependent up-regulation of p21. The inhibitory effect on cell proliferation was more pronounced in cell lines containing wild-type p53, but was not seen in cells transfected with siRNAs against DHFR or TS. Moreover, denticleless protein homolog (DTL), a cell cycle-regulated nuclear and centrosome protein, was confirmed to be one of the critical targets of miR-215, and knock-down of DTL by siRNA resulted in enhanced G2-arrest, p53 and p21 induction, and reduced cell proliferation. Additionally, cells subjected to siRNA against DTL exhibited increased chemoresistance to MTX and TDX. Endogenous miR-215 was elevated about 3-fold in CD133+HI/CD44+HI colon cancer stem cells that exhibit slow proliferating rate and chemoresistance compared to control bulk CD133+/CD44+ colon cancer cells. Conclusions: Taken together, our results indicate that miR-215, through the suppression of DTL expression, induces a decreased cell proliferation by causing G2-arrest, thereby leading to an increase in chemoresistance to MTX and TDX. The findings of this study suggest that miR-215 may play a significant role in the mechanism of tumor chemoresistance and it may have a unique potential as a novel biomarker candidate.
引用
收藏
页数:10
相关论文
共 52 条
[1]   Novel aspects of resistance to drugs targeted to dihydrofolate reductase and thymidylate synthase [J].
Banerjee, D ;
Mayer-Kuckuk, P ;
Capiaux, G ;
Budak-Alpdogan, T ;
Gorlick, R ;
Bertino, JR .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2002, 1587 (2-3) :164-173
[2]   L2DTL/CDT2 and PCNA interact with p53 and regulate p53 polyubiquitination and protein stability through MDM2 and CUL4A/DDB1 complexes [J].
Banks, Damon ;
Wu, Min ;
Higa, Leigh Ann ;
Gavrilova, Nadia ;
Quan, Junmin ;
Ye, Tao ;
Kobayashi, Ryuji ;
Sun, Hong ;
Zhang, Hui .
CELL CYCLE, 2006, 5 (15) :1719-1729
[3]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[4]  
Botchkina Inna L., 2009, Cancer Genomics & Proteomics, V6, P19
[5]   p53-Responsive MicroRNAs 192 and 215 Are Capable of Inducing Cell Cycle Arrest [J].
Braun, Christian J. ;
Zhang, Xin ;
Savelyeva, Irina ;
Wolff, Sonja ;
Moll, Ute M. ;
Schepeler, Troels ;
Orntoft, Torben F. ;
Andersen, Claus L. ;
Dobbelstein, Matthias .
CANCER RESEARCH, 2008, 68 (24) :10094-10104
[6]   MicroRNA-cancer connection: The beginning of a new tale [J].
Calin, George Adrian ;
Croce, Carlo Maria .
CANCER RESEARCH, 2006, 66 (15) :7390-7394
[7]   THE CATALYTIC MECHANISM AND STRUCTURE OF THYMIDYLATE SYNTHASE [J].
CARRERAS, CW ;
SANTI, DV .
ANNUAL REVIEW OF BIOCHEMISTRY, 1995, 64 :721-762
[8]   Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis [J].
Chang, Tsung-Cheng ;
Wentzel, Erik A. ;
Kent, Oliver A. ;
Ramachandran, Kalyani ;
Mullendore, Michael ;
Lee, Kwang Hyuck ;
Feldmann, Georg ;
Yamakuchi, Munekazu ;
Ferlito, Marcella ;
Lowenstein, Charles J. ;
Arking, Dan E. ;
Beer, Michael A. ;
Maitra, Anirban ;
Mendell, Joshua T. .
MOLECULAR CELL, 2007, 26 (05) :745-752
[9]   AUTOREGULATION OF HUMAN THYMIDYLATE SYNTHASE MESSENGER-RNA TRANSLATION BY THYMIDYLATE SYNTHASE [J].
CHU, E ;
KOELLER, DM ;
CASEY, JL ;
DRAKE, JC ;
CHABNER, BA ;
ELWOOD, PC ;
ZINN, S ;
ALLEGRA, CJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (20) :8977-8981
[10]  
Chu E, 1999, MOL CELL BIOL, V19, P1582