TR-GAN: Multi-Session Future MRI Prediction With Temporal Recurrent Generative Adversarial Network

被引:11
作者
Fan, Chen-Chen [1 ,2 ]
Peng, Liang [1 ]
Wang, Tian [3 ]
Yang, Hongjun [1 ]
Zhou, Xiao-Hu [1 ]
Ni, Zhen-Liang [1 ,2 ]
Wang, Guan'an [1 ,2 ]
Chen, Sheng [1 ,2 ]
Zhou, Yan-Jie [1 ,2 ]
Hou, Zeng-Guang [1 ,2 ,4 ,5 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[3] Commun Univ China, Neurosci & Intelligent Media Inst, Beijing 100024, Peoples R China
[4] CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing 100190, Peoples R China
[5] Macau Univ Sci & Technol, CASIA MUST Joint Lab Intelligence Sci & Technol, Inst Syst Engn, Macau 999078, Peoples R China
基金
美国国家卫生研究院; 北京市自然科学基金; 中国国家自然科学基金;
关键词
Magnetic resonance imaging; Generative adversarial networks; Task analysis; Three-dimensional displays; Training; Generators; Data models; Alzheimer's disease; magnetic resonance imaging; generative adversarial network; ALZHEIMERS-DISEASE; IMAGE;
D O I
10.1109/TMI.2022.3151118
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Magnetic Resonance Imaging (MRI) has been proven to be an efficient way to diagnose Alzheimer's disease (AD). Recent dramatic progress on deep learning greatly promotes the MRI analysis based on data-driven CNN methods using a large-scale longitudinal MRI dataset. However, most of the existing MRI datasets are fragmented due to unexpected quits of volunteers. To tackle this problem, we propose a novel Temporal Recurrent Generative Adversarial Network (TR-GAN) to complete missing sessions of MRI datasets. Unlike existing GAN-based methods, which either fail to generate future sessions or only generate fixed-length sessions, TR-GAN takes all past sessions to recurrently and smoothly generate future ones with variant length. Specifically, TR-GAN adopts recurrent connection to deal with variant input sequence length and flexibly generate future variant sessions. Besides, we also design a multiple scale & location (MSL) module and a SWAP module to encourage the model to better focus on detailed information, which helps to generate high-quality MRI data. Compared with other popular GAN architectures, TR-GAN achieved the best performance in all evaluation metrics of two datasets. After expanding the Whole MRI dataset, the balanced accuracy of AD vs. cognitively normal (CN) vs. mild cognitive impairment (MCI) and stable MCI vs. progressive MCI classification can be increased by 3.61% and 4.00%, respectively.
引用
收藏
页码:1925 / 1937
页数:13
相关论文
共 47 条
  • [11] Cui RX, 2018, I S BIOMED IMAGING, P1398, DOI 10.1109/ISBI.2018.8363833
  • [12] Detection of prodromal Alzheimer's disease via pattern classification of magnetic resonance imaging
    Davatzikos, Christos
    Fan, Yong
    Wu, Xiaoying
    Shen, Dinggang
    Resnick, Susan M.
    [J]. NEUROBIOLOGY OF AGING, 2008, 29 (04) : 514 - 523
  • [13] MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD
    deToledo-Morrell, L
    Stoub, TR
    Bulgakova, M
    Wilson, RS
    Bennett, DA
    Leurgans, S
    Wuu, J
    Turner, DA
    [J]. NEUROBIOLOGY OF AGING, 2004, 25 (09) : 1197 - 1203
  • [14] Fonov V., 2009, NeuroImage, V47, pS102, DOI [DOI 10.1016/S1053-8119(09)70884-5, 10.1016/S1053-8119, DOI 10.1016/S1053-8119, 10.1016/S1053-8119(09)70884-5]
  • [15] Unbiased average age-appropriate atlases for pediatric studies
    Fonov, Vladimir
    Evans, Alan C.
    Botteron, Kelly
    Almli, C. Robert
    McKinstry, Robert C.
    Collins, D. Louis
    [J]. NEUROIMAGE, 2011, 54 (01) : 313 - 327
  • [16] Training recurrent neural networks robust to incomplete data: Application to Alzheimer's disease progression modeling
    Ghazi, Mostafa Mehdipour
    Nielsen, Mads
    Pai, Akshay
    Cardoso, M. Jorge
    Modat, Marc
    Ourselin, Sebastien
    Sorensen, Lauge
    [J]. MEDICAL IMAGE ANALYSIS, 2019, 53 (39-46) : 39 - 46
  • [17] Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1007/978-3-642-24797-2, 10.1162/neco.1997.9.1.1]
  • [18] Auto-Embedding Generative Adversarial Networks For High Resolution Image Synthesis
    Guo, Yong
    Chen, Qi
    Chen, Jian
    Wu, Qingyao
    Shi, Qinfeng
    Tan, Mingkui
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (11) : 2726 - 2737
  • [19] Synthesizing Diverse Lung Nodules Wherever Massively: 3D Multi-Conditional GAN-based CT Image Augmentation for Object Detection
    Han, Changhee
    Kitamura, Yoshiro
    Kudo, Akira
    Ichinose, Akimichi
    Rundo, Leonardo
    Furukawa, Yujiro
    Umemoto, Kazuki
    Li, Yuanzhong
    Nakayama, Hideki
    [J]. 2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019), 2019, : 729 - 737
  • [20] Han C, 2018, I S BIOMED IMAGING, P734, DOI 10.1109/ISBI.2018.8363678