CO2-philic WS2 laminated membranes with a nanoconfined ionic liquid

被引:44
作者
Chen, Danke [1 ]
Wang, Wensen [2 ]
Ying, Wen [1 ]
Guo, Yi [1 ]
Meng, Donghui [3 ]
Yan, Youguo [2 ]
Yan, Rongxin [3 ]
Peng, Xinsheng [1 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[2] China Univ Petr East China, Coll Sci, Qingdao 266580, Peoples R China
[3] Beijing Inst Spacecraft Environm Engn, Beijing 100094, Peoples R China
关键词
FACILITATED CO2 TRANSPORT; ORGANIC FRAMEWORK; TEMPERATURE; SEPARATION; CAPTURE; PERFORMANCE; GRAPHENE; TRANSITION; DYNAMICS; SILICA;
D O I
10.1039/c8ta04753g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The modern global climate change and global warming of Earth make it an urgent need to develop emerging CO2 capture and storage techniques. Herein, we first reported the use of WS2 nanosheets to construct laminated membranes for CO2 separation. However, the WS2 membrane showed poor CO2 separation performance with Knudsen selectivities for N-2/CO2 (1.28), CH4/CO2 (1.72) and H-2/CO2 (4.96). To improve the performance, an ionic liquid (IL) 1-butyl-3-methyl imidazolium tetrafluoroborate ([BMIM][BF4]) with high CO2 solubility and practically no vapour pressure was used for filling the nanochannels of the WS2 membrane. Compared to the bulk IL, the nanoconfined IL exhibits higher freezing temperature, shift of vibration bands and higher interaction energy between CO2 and ILs. Besides, the prepared WS2 laminated membrane with the nanoconfined ionic liquid shows excellent selectivities for CO2/N-2 (153.21), CO2/CH4 (68.81) and CO2/H-2 (13.56) in single gas measurements as well as good CO2 permeance due to the nanoconfinement of the IL. The simulation results further confirmed and explained the CO2 separation mechanism. It indicates that the nanoconfinement of ILs into the nanochannels of two-dimensional materials is a novel way to achieve CO2-philic membranes to efficiently separate CO2 from other light gases.
引用
收藏
页码:16566 / 16573
页数:8
相关论文
共 58 条
[1]   High performance MoS2 membranes: effects of thermally driven phase transition on CO2 separation efficiency [J].
Achari, A. ;
Sahana, S. ;
Eswaramoorthy, M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (04) :1224-1228
[2]  
And M. B. S., 2005, IND ENG CHEM RES, V44, P4453
[3]   Guide to CO2 Separations in Imidazolium-Based Room-Temperature Ionic Liquids [J].
Bara, Jason E. ;
Carlisle, Trevor K. ;
Gabriel, Christopher J. ;
Camper, Dean ;
Finotello, Alexia ;
Gin, Douglas L. ;
Noble, Richard D. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (06) :2739-2751
[4]   CO2 capture by a task-specific ionic liquid [J].
Bates, ED ;
Mayton, RD ;
Ntai, I ;
Davis, JH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (06) :926-927
[5]   Ionic liquids in separation techniques [J].
Berthod, A. ;
Ruiz-Angel, Mt ;
Carda-Broch, S. .
JOURNAL OF CHROMATOGRAPHY A, 2008, 1184 (1-2) :6-18
[6]   Why is CO2 so soluble in imidazolium-based ionic liquids? [J].
Cadena, C ;
Anthony, JL ;
Shah, JK ;
Morrow, TI ;
Brennecke, JF ;
Maginn, EJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (16) :5300-5308
[7]   Highly permeable ionic liquid membrane by both facilitated transport and the increase of diffusivity through porous materials [J].
Chang, Jungyun ;
Hong, Gil Hwan ;
Kang, Sang Wook .
RSC ADVANCES, 2015, 5 (85) :69698-69701
[8]   Fast diffusion in a room temperature ionic liquid confined in mesoporous carbon [J].
Chathoth, S. M. ;
Mamontov, E. ;
Dai, S. ;
Wang, X. ;
Fulvio, P. F. ;
Wesolowski, D. J. .
EPL, 2012, 97 (06)
[9]   Transition of ionic liquid [bmim][PF6] from liquid to high-melting-point crystal when confined in multiwalled carbon nanotubes [J].
Chen, Shimou ;
Wu, Guozhong ;
Sha, Maolin ;
Huang, Shirong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (09) :2416-+
[10]   Morphology and Melting Behavior of Ionic Liquids inside Single-Walled Carbon Nanotubes [J].
Chen, Shimou ;
Kobayashi, Keita ;
Miyata, Yasumitsu ;
Imazu, Naoki ;
Saito, Takeshi ;
Kitaura, Ryo ;
Shinohara, Hisanori .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (41) :14850-14856