HARDY-TYPE INEQUALITIES WITH SHARP CONSTANTS IN DOMAINS LAMBDA-CLOSE TO CONVEX

被引:2
作者
Avkhadiev, F. G. [1 ]
机构
[1] KAZAN VOLGA DOMAIN FED UNIV, LOBACHEVSKY INST MATH & MECH, Kazan, Russia
关键词
Hardy-type inequality; weakly convex domain; gradient of the distance function; WEAK CONVEXITY; SETS;
D O I
10.1134/S0037446622030016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We justify new integral inequalities with sharp constants for real-valued functions vanishing on the boundary of a domain of Euclidean space on assuming the domain lambda-close to convex. In particular, the closure of such domain is weakly convex in the sense of Efimov-Stechkin and Vial. We describe both standard and strengthen Hardy-type inequalities when instead of the gradients of test functions we use the inner products of the gradients of the distance function from a point to the boundary of the domain by test functions. To prove our main theorem, we apply several lemmas of significance in their own right.
引用
收藏
页码:395 / 411
页数:17
相关论文
共 30 条
[1]  
[Anonymous], 1969, Die Grundlehren der Mathematischen Wissenschaften
[2]   THE CONVEXITY OF A DOMAIN AND THE SUPERHARMONICITY OF THE SIGNED DISTANCE FUNCTION [J].
ARMITAGE, DH ;
KURAN, U .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 93 (04) :598-600
[3]   HARDY TYPE INEQUALITIES INVOLVING GRADIENT OF DISTANCE FUNCTION [J].
Avkhadiev, F. G. .
UFA MATHEMATICAL JOURNAL, 2021, 13 (03) :3-16
[4]   A Strong Form of Hardy Type Inequalities on Domains of the Euclidean Space [J].
Avkhadiev, F. G. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (11) :2120-2135
[5]   HARDY-RELLICH INTEGRAL INEQUALITIES IN DOMAINS SATISFYING THE EXTERIOR SPHERE CONDITION [J].
Avkhadiev, F. G. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2019, 30 (02) :161-179
[6]   Sharp Hardy constants for annuli [J].
Avkhadiev, F. G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (01) :936-951
[7]   Sharp constants in hardy type inequalities [J].
Avkhadiev F.G. .
Russian Mathematics, 2015, 59 (10) :53-56
[8]   Sharp estimates of Hardy constants for domains with special boundary properties [J].
Avkhadiev F.G. ;
Shafigullin I.K. .
Russian Mathematics, 2014, 58 (2) :58-61
[9]   A geometric description of domains whose Hardy constant is equal to 1/4 [J].
Avkhadiev, F. G. .
IZVESTIYA MATHEMATICS, 2014, 78 (05) :855-876
[10]   Hardy-type inequalities in arbitrary domains with finite inner radius [J].
Avkhadiev, F. G. ;
Nasibullin, R. G. .
SIBERIAN MATHEMATICAL JOURNAL, 2014, 55 (02) :191-200