An energy-consistent dispersive shallow-water model

被引:63
作者
Christov, CI [1 ]
机构
[1] Univ Louisiana Lafayette, Dept Math, Lafayette, LA 70504 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0165-2125(00)00082-2
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The flow of inviscid liquid in a shallow layer with free surface is revisited in the framework of the Boussinesq approximation. The unnecessary approximations connected with the moving frame are removed and a Boussinesq model is derived which is Galilean invariant to the leading asymptotic order. The Hamiltonian structure of the new model is demonstrated. The conservation and/or balance laws for wave mass, energy and wave momentum (pseudo-momentum) are derived. A new localized solution is obtained analytically and compared to the classical Boussinesq sech. Numerical simulation of the collision of two solitary waves is conducted and the impact of Galilean invariance on phase shift is discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:161 / 174
页数:14
相关论文
共 20 条
[1]  
AIRY G B., 1845, ENCY METROPOLITANA, V5, P241
[2]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[3]  
Boussinesq J., 1871, CR HEBD ACAD SCI, V73, P256
[4]  
Boussinesq J., 1872, J. Math. Pures Appl, V17, P55
[5]  
Boussinesq MJ, 1871, C R Math Acad Sci Paris, V72, P755
[6]  
Christov C I, 1995, FLUID PHYSICS, P403
[7]   INELASTIC INTERACTION OF BOUSSINESQ SOLITONS [J].
CHRISTOV, CI ;
VELARDE, MG .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (05) :1095-1112
[8]   Well-posed Boussinesq paradigm with purely spatial higher-order derivatives [J].
Christov, CI ;
Maugin, GA ;
Velarde, MG .
PHYSICAL REVIEW E, 1996, 54 (04) :3621-3638
[9]  
CHRISTOV CI, 1995, P ICFD, V5, P343
[10]  
Maugin G.A., 1993, MAT INHOMOGENEITIES