EBSD IMAGE SEGMENTATION USING A PHYSICS-BASED FORWARD MODEL

被引:0
|
作者
Park, Se Un [1 ]
Wei, Dennis [1 ]
De Graef, Marc [2 ]
Shah, Megna [3 ]
Simmons, Jeff [3 ]
Hero, Alfred O. [1 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[3] Air Force Res Lab, New York, NY USA
关键词
Image Segmentation; Dictionary Learning; Electron Backscatter Diffraction (EBSD); Pattern Matching; Materials Science; LAND-COVER;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
We propose a segmentation and anomaly detection method for electron backscatter diffraction (EBSD) images. In contrast to conventional methods that require Euler angles to be extracted from diffraction patterns, the proposed method operates on the patterns directly. We use a forward model implemented as a dictionary of diffraction patterns generated by a detailed physics-based simulation of EBSD. The combination of full diffraction patterns and a dictionary allows anomalies to be detected at the same time as grains are segmented, and also increases robustness to noise and instrument blur. The proposed method is demonstrated on a sample of the Ni-base alloy IN100.
引用
收藏
页码:3780 / 3784
页数:5
相关论文
共 50 条
  • [31] Physics-based machine learning for subcellular segmentation in living cells
    Arif Ahmed Sekh
    Ida S. Opstad
    Gustav Godtliebsen
    Åsa Birna Birgisdottir
    Balpreet Singh Ahluwalia
    Krishna Agarwal
    Dilip K. Prasad
    Nature Machine Intelligence, 2021, 3 : 1071 - 1080
  • [32] Physics-based shape deformations for medical image analysis
    Hamarneh, G
    McInerney, T
    IMAGE PROCESSING: ALGORITHMS AND SYSTEMS II, 2003, 5014 : 354 - 362
  • [33] Physics-based shading reconstruction for intrinsic image decomposition
    Baslamisli, Anil S.
    Liu, Yang
    Karaoglu, Sezer
    Gevers, Theo
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 205
  • [34] Physics-Based Shadow Image Decomposition for Shadow Removal
    Le, Hieu
    Samaras, Dimitris
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9088 - 9101
  • [35] Calibration of a Physics-Based Model of an Anthropomimetic Robot using Evolution Strategies
    Wittmeier, Steffen
    Gaschler, Andre
    Jaentsch, Michael
    Dalamagkidis, Konstantinos
    Knoll, Alois
    2012 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2012, : 445 - 450
  • [36] Microstructure Prediction for Cryogenic Cutting using a Physics-based Material Model
    Shen, Ninggang
    Ding, Hongtao
    3RD CIRP CONFERENCE ON SURFACE INTEGRITY, 2016, 45 : 107 - 110
  • [37] Physics-based shape matching for intraoperative image guidance
    Suwelack, Stefan
    Roehl, Sebastian
    Bodenstedt, Sebastian
    Reichard, Daniel
    Dillmann, Ruediger
    dos Santos, Thiago
    Maier-Hein, Lena
    Wagner, Martin
    Wuenscher, Josephine
    Kenngott, Hannes
    Mueller, Beat P.
    Speidel, Stefanie
    MEDICAL PHYSICS, 2014, 41 (11)
  • [38] Physics-based reward driven image analysis in microscopy
    Barakati, K.
    Yuan, Hui
    Goyal, Amit
    Kalinin, S. V.
    DIGITAL DISCOVERY, 2024, 3 (10): : 2061 - 2069
  • [39] Physics-based deformable organisms for medical image analysis
    Hamarneh, G
    McIntosh, C
    MEDICAL IMAGING 2005: IMAGE PROCESSING, PT 1-3, 2005, 5747 : 326 - 335
  • [40] A framework for charging strategy optimization using a physics-based battery model
    Lin, Xianke
    Wang, Siyang
    Kim, Youngki
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2019, 49 (08) : 779 - 793