Non Parametric Data Augmentations Improve Deep-Learning based Brain Tumor Segmentation

被引:1
作者
Ben Atya, Hadas [1 ]
Rajchert, Ori [1 ]
Goshen, Liran [2 ]
Freiman, Moti [1 ]
机构
[1] Technion IIT, Fac Biomed Engn, Haifa, Israel
[2] CT BU Philips, Global Adv Technol, Haifa, Israel
来源
2021 IEEE INTERNATIONAL CONFERENCE ON MICROWAVES, ANTENNAS, COMMUNICATIONS AND ELECTRONIC SYSTEMS (COMCAS) | 2021年
关键词
Brain Tumor Segmentation; Medical Image Segmentation; Data Augmentation; nnU-Net;
D O I
10.1109/COMCAS52219.2021.9629083
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic brain tumor segmentation from Magnetic Resonance Imaging (MRI) data plays an important role in assessing tumor response to therapy and personalized treatment stratification. Manual segmentation is tedious and subjective. Deep-learning based algorithms for brain tumor segmentation have the potential to provide objective and fast tumor segmentation. However, the training of such algorithms requires large datasets which are not always available. Data augmentation techniques may reduce the need for large datasets. However current approaches are mostly parametric and may result in suboptimal performance. We introduce two non-parametric methods of data augmentation for brain tumor segmentation: the mixed structure regularization (MSR) and shuffle pixels noise (SPN). We evaluated the added value of the MSR and SPN augmentation on the brain tumor segmentation (BraTS) 2018 challenge dataset with the encoder-decoder nnU-Net architecture as the segmentation algorithm. Both MSR ans SPN improve the nnU-Net segmentation accuracy compared to parametric Gaussian noise augmentation.(Mean dice score increased from 80% to 82% and p-values=0.0022, 0.0028 when comparing MSR to non parametric augmentation for the tumor core and whole tumor experiments respectively. The proposed MSR and SPN augmentations has the potential to improve neural-networks performance in other tasks as well.
引用
收藏
页码:357 / 360
页数:4
相关论文
共 10 条
  • [1] Unsupervised abnormality detection through mixed structure regularization (MSR) in deep sparse autoencoders
    Freiman, Moti
    Manjeshwar, Ravindra
    Goshen, Liran
    [J]. MEDICAL PHYSICS, 2019, 46 (05) : 2223 - 2231
  • [2] Isensee F, 2020, Arxiv, DOI arXiv:1904.08128
  • [3] nnU-Net for Brain Tumor Segmentation
    Isensee, Fabian
    Jaeger, Paul F.
    Full, Peter M.
    Vollmuth, Philipp
    Maier-Hein, Klaus H.
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II, 2021, 12659 : 118 - 132
  • [4] The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)
    Menze, Bjoern H.
    Jakab, Andras
    Bauer, Stefan
    Kalpathy-Cramer, Jayashree
    Farahani, Keyvan
    Kirby, Justin
    Burren, Yuliya
    Porz, Nicole
    Slotboom, Johannes
    Wiest, Roland
    Lanczi, Levente
    Gerstner, Elizabeth
    Weber, Marc-Andre
    Arbel, Tal
    Avants, Brian B.
    Ayache, Nicholas
    Buendia, Patricia
    Collins, D. Louis
    Cordier, Nicolas
    Corso, Jason J.
    Criminisi, Antonio
    Das, Tilak
    Delingette, Herve
    Demiralp, Cagatay
    Durst, Christopher R.
    Dojat, Michel
    Doyle, Senan
    Festa, Joana
    Forbes, Florence
    Geremia, Ezequiel
    Glocker, Ben
    Golland, Polina
    Guo, Xiaotao
    Hamamci, Andac
    Iftekharuddin, Khan M.
    Jena, Raj
    John, Nigel M.
    Konukoglu, Ender
    Lashkari, Danial
    Mariz, Jose Antonio
    Meier, Raphael
    Pereira, Sergio
    Precup, Doina
    Price, Stephen J.
    Raviv, Tammy Riklin
    Reza, Syed M. S.
    Ryan, Michael
    Sarikaya, Duygu
    Schwartz, Lawrence
    Shin, Hoo-Chang
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (10) : 1993 - 2024
  • [5] V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
    Milletari, Fausto
    Navab, Nassir
    Ahmadi, Seyed-Ahmad
    [J]. PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, : 565 - 571
  • [6] 3D MRI Brain Tumor Segmentation Using Autoencoder Regularization
    Myronenko, Andriy
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 311 - 320
  • [7] Qi Dou, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P149, DOI 10.1007/978-3-319-46723-8_18
  • [8] U-Net: Convolutional Networks for Biomedical Image Segmentation
    Ronneberger, Olaf
    Fischer, Philipp
    Brox, Thomas
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 234 - 241
  • [9] Automatic Brain Tumor Segmentation Based on Cascaded Convolutional Neural Networks With Uncertainty Estimation
    Wang, Guotai
    Li, Wenqi
    Ourselin, Sebastien
    Vercauteren, Tom
    [J]. FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2019, 13
  • [10] Understanding Deep Learning (Still) Requires Rethinking Generalization
    Zhang, Chiyuan
    Bengio, Samy
    Hardt, Moritz
    Recht, Benjamin
    Vinyals, Oriol
    [J]. COMMUNICATIONS OF THE ACM, 2021, 64 (03) : 107 - 115