STABLE COMPUTATIONS WITH GAUSSIAN RADIAL BASIS FUNCTIONS

被引:303
|
作者
Fornberg, Bengt [1 ]
Larsson, Elisabeth [2 ]
Flyer, Natasha [3 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
[3] Natl Ctr Atmospher Res, Inst Math Appl Geosci, Boulder, CO 80305 USA
基金
瑞典研究理事会; 美国国家科学基金会;
关键词
radial basis function; ill-conditioning; shape parameter; stable; DOMAIN DECOMPOSITION METHODS; MULTIQUADRIC INTERPOLATION; MULTIVARIATE INTERPOLATION; SHAPE PARAMETER; POLYNOMIALS; SPHERE; ALGORITHM; EQUATIONS; LIMIT;
D O I
10.1137/09076756X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Radial basis function (RBF) approximation is an extremely powerful tool for representing smooth functions in nontrivial geometries since the method is mesh-free and can be spectrally accurate. A perceived practical obstacle is that the interpolation matrix becomes increasingly ill-conditioned as the RBF shape parameter becomes small, corresponding to flat RBFs. Two stable approaches that overcome this problem exist: the Contour-Pade method and the RBF-QR method. However, the former is limited to small node sets, and the latter has until now been formulated only for the surface of the sphere. This paper focuses on an RBF-QR formulation for node sets in one, two, and three dimensions. The algorithm is stable for arbitrarily small shape parameters. It can be used for thousands of node points in two dimensions and still more in three dimensions. A sample MATLAB code for the two-dimensional case is provided.
引用
收藏
页码:869 / 892
页数:24
相关论文
共 50 条
  • [41] Aeroacoustic source term computation based on radial basis functions
    Schoder, Stefan
    Roppert, Klaus
    Weitz, Michael
    Junger, Clemens
    Kaltenbacher, Manfred
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2020, 121 (09) : 2051 - 2067
  • [42] SOLUTIONS TO PSEUDODIFFERENTIAL EQUATIONS USING SPHERICAL RADIAL BASIS FUNCTIONS
    Pham, T. D.
    Tran, T.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 79 (03) : 473 - 485
  • [43] Optimal Weighted Pointwise Ensemble of Radial Basis Functions with Different Basis Functions
    Liu, Haitao
    Xu, Shengli
    Wang, Xiaofang
    Meng, Jigang
    Yang, Shuhua
    AIAA JOURNAL, 2016, 54 (10) : 3117 - 3133
  • [44] Optimal Centers' Allocation in Smoothing or Interpolating with Radial Basis Functions
    Gonzalez-Rodelas, Pedro
    Idais, Hasan M. H.
    Yasin, Mohammed
    Pasadas, Miguel
    MATHEMATICS, 2022, 10 (01)
  • [45] Numerical Experiments on Optimal Shape Parameters for Radial Basis Functions
    Roque, C. M. C.
    Ferreira, A. J. M.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (03) : 675 - 689
  • [46] Implicit surface reconstruction with radial basis functions via PDEs
    Liu, Xiao-Yan
    Wang, Hui
    Chen, C. S.
    Wang, Qing
    Zhou, Xiaoshuang
    Wang, Yong
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2020, 110 (110) : 95 - 103
  • [47] Approximation of insurance liability contracts using radial basis functions
    Singor, Stefan N.
    Schols, Eric
    Oosterlee, Cornelis W.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (11) : 2245 - 2271
  • [48] Generalised Gaussian radial basis function neural networks
    Fernandez-Navarro, F.
    Hervas-Martinez, C.
    Gutierrez, P. A.
    SOFT COMPUTING, 2013, 17 (03) : 519 - 533
  • [49] The uselessness of the Fast Gauss Transform for summing Gaussian radial basis function series
    Boyd, John P.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (04) : 1311 - 1326
  • [50] Preconditioning for Radial Basis Function Partition of Unity Methods
    Heryudono, Alfa
    Larsson, Elisabeth
    Ramage, Alison
    von Sydow, Lina
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 67 (03) : 1089 - 1109