STABLE COMPUTATIONS WITH GAUSSIAN RADIAL BASIS FUNCTIONS

被引:304
|
作者
Fornberg, Bengt [1 ]
Larsson, Elisabeth [2 ]
Flyer, Natasha [3 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
[3] Natl Ctr Atmospher Res, Inst Math Appl Geosci, Boulder, CO 80305 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2011年 / 33卷 / 02期
基金
美国国家科学基金会; 瑞典研究理事会;
关键词
radial basis function; ill-conditioning; shape parameter; stable; DOMAIN DECOMPOSITION METHODS; MULTIQUADRIC INTERPOLATION; MULTIVARIATE INTERPOLATION; SHAPE PARAMETER; POLYNOMIALS; SPHERE; ALGORITHM; EQUATIONS; LIMIT;
D O I
10.1137/09076756X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Radial basis function (RBF) approximation is an extremely powerful tool for representing smooth functions in nontrivial geometries since the method is mesh-free and can be spectrally accurate. A perceived practical obstacle is that the interpolation matrix becomes increasingly ill-conditioned as the RBF shape parameter becomes small, corresponding to flat RBFs. Two stable approaches that overcome this problem exist: the Contour-Pade method and the RBF-QR method. However, the former is limited to small node sets, and the latter has until now been formulated only for the surface of the sphere. This paper focuses on an RBF-QR formulation for node sets in one, two, and three dimensions. The algorithm is stable for arbitrarily small shape parameters. It can be used for thousands of node points in two dimensions and still more in three dimensions. A sample MATLAB code for the two-dimensional case is provided.
引用
收藏
页码:869 / 892
页数:24
相关论文
共 50 条
  • [1] STABLE COMPUTATION OF DIFFERENTIATION MATRICES AND SCATTERED NODE STENCILS BASED ON GAUSSIAN RADIAL BASIS FUNCTIONS
    Larsson, Elisabeth
    Lehto, Erik
    Heryudono, Alfa
    Fornberg, Bengt
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (04): : A2096 - A2119
  • [2] Stable computations with flat radial basis functions using vector-valued rational approximations
    Wright, Grady B.
    Fornberg, Bengt
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 331 : 137 - 156
  • [3] A stable algorithm for flat radial basis functions on a sphere
    Fornberg, Bengt
    Piret, Cecile
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 30 (01): : 60 - 80
  • [4] FACTORIZATION, SYMMETRIZATION, AND TRUNCATED TRANSFORMATION OF RADIAL BASIS FUNCTION-GA STABILIZED GAUSSIAN RADIAL BASIS FUNCTIONS
    Le Borne, Sabine
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2019, 40 (02) : 517 - 541
  • [5] Hybrid Gaussian-cubic radial basis functions for scattered data interpolation
    Mishra, Pankaj K.
    Nath, Sankar K.
    Sen, Mrinal K.
    Fasshauer, Gregory E.
    COMPUTATIONAL GEOSCIENCES, 2018, 22 (05) : 1203 - 1218
  • [6] STABLE EVALUATION OF GAUSSIAN RADIAL BASIS FUNCTION INTERPOLANTS
    Fasshauer, Gregory E.
    Mccourt, Michael J.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (02): : A737 - A762
  • [7] Modified Gaussian Radial Basis Function Method for the Burgers Systems
    Aminikhah, Hossein
    Sadeghi, Mostafa
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2019, 14 (01): : 199 - 210
  • [8] Radial basis function interpolation in the limit of increasingly flat basis functions
    Kindelan, Manuel
    Moscoso, Miguel
    Gonzalez-Rodriguez, Pedro
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 307 : 225 - 242
  • [9] Stabilized interpolation using radial basis functions augmented with selected radial polynomials
    Pooladi, Fatemeh
    Larsson, Elisabeth
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 437
  • [10] A LEAST SQUARES RADIAL BASIS FUNCTION PARTITION OF UNITY METHOD FOR SOLVING PDES
    Larsson, Elisabeth
    Shcherbakov, Victor
    Heryudono, Alfa
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (06): : A2538 - A2563