A discrete model of evolution of small paralog families

被引:10
作者
Tiuryn, Jerzy
Wojtowicz, Damian
Rudnicki, Ryszard
机构
[1] Warsaw Univ, Inst Informat, PL-02097 Warsaw, Poland
[2] Silesian Univ, Inst Math, PL-40007 Katowice, Poland
[3] Polish Acad Sci, Inst Math, PL-40007 Katowice, Poland
关键词
genome evolution; paralogous genes; gene family size distribution; Markov chain;
D O I
10.1142/S0218202507002169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce and analyze a simple probabilistic model of genome evolution. It is based on three fundamental evolutionary events: gene loss, duplication and accumulated change. We are mainly interested in asymptotic size distribution of small paralogous gene families in a genome. This is motivated by previous works which consisted in fitting the available genomic data into, what is called, paralog distributions. This formalism is described as a discrete-time Markov chain. The formulas for equilibrium paralog family sizes are derived. Moreover, we show that when probabilities of gene removal and duplication are small and close to each other, then the resulting distribution is close to logarithmic distribution. Some empirical results for microbial genomes are presented.
引用
收藏
页码:933 / 955
页数:23
相关论文
共 25 条
[1]   Modelling the evolution of genomes with integrated external and internal functions [J].
Bengtsson, BO .
JOURNAL OF THEORETICAL BIOLOGY, 2004, 231 (02) :271-278
[3]   ABSORBENT MARKOV-CHAINS AS A MODEL FOR THE STUDY OF THE EVOLUTION OF PROTEINS [J].
DIGIULIO, M ;
CALDARARO, F .
JOURNAL OF THEORETICAL BIOLOGY, 1987, 124 (04) :485-494
[4]   Genome evolution in yeasts [J].
Dujon, B ;
Sherman, D ;
Fischer, G ;
Durrens, P ;
Casaregola, S ;
Lafontaine, I ;
de Montigny, J ;
Marck, C ;
Neuvéglise, C ;
Talla, E ;
Goffard, N ;
Frangeul, L ;
Aigle, M ;
Anthouard, V ;
Babour, A ;
Barbe, V ;
Barnay, S ;
Blanchin, S ;
Beckerich, JM ;
Beyne, E ;
Bleykasten, C ;
Boisramé, A ;
Boyer, J ;
Cattolico, L ;
Confanioleri, F ;
de Daruvar, A ;
Despons, L ;
Fabre, E ;
Fairhead, C ;
Ferry-Dumazet, H ;
Groppi, A ;
Hantraye, F ;
Hennequin, C ;
Jauniaux, N ;
Joyet, P ;
Kachouri, R ;
Kerrest, A ;
Koszul, R ;
Lemaire, M ;
Lesur, I ;
Ma, L ;
Muller, H ;
Nicaud, JM ;
Nikolski, M ;
Oztas, S ;
Ozier-Kalogeropoulos, O ;
Pellenz, S ;
Potier, S ;
Richard, GF ;
Straub, ML .
NATURE, 2004, 430 (6995) :35-44
[5]   An efficient algorithm for large-scale detection of protein families [J].
Enright, AJ ;
Van Dongen, S ;
Ouzounis, CA .
NUCLEIC ACIDS RESEARCH, 2002, 30 (07) :1575-1584
[6]  
Feller W., 1961, INTRO PROBABILITY TH, V1
[7]   Homology - a personal view on some of the problems [J].
Fitch, WM .
TRENDS IN GENETICS, 2000, 16 (05) :227-231
[8]   Evolutionary dynamics in carcinogenesis [J].
Gatenby, RA ;
Vincent, TL ;
Gillies, RJ .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (11) :1619-1638
[9]   Minimal model for genome evolution and growth [J].
Hsieh, LC ;
Luo, L ;
Ji, FM ;
Lee, HC .
PHYSICAL REVIEW LETTERS, 2003, 90 (01) :4
[10]   The frequency distribution of gene family sizes in complete genomes [J].
Huynen, MA ;
van Nimwegen, E .
MOLECULAR BIOLOGY AND EVOLUTION, 1998, 15 (05) :583-589