Multiplexed CRISPR/Cas9-and TAR-Mediated Promoter Engineering of Natural Product Biosynthetic Gene Clusters in Yeast

被引:87
作者
Kang, Hahk-Soo [1 ,2 ]
Charlop-Powers, Zachary [1 ]
Brady, Sean F. [1 ]
机构
[1] Rockefeller Univ, Lab Genetically Encoded Small Mol, 1230 York Ave, New York, NY 10065 USA
[2] Konkuk Univ, Dept Bioind Technol, Seoul 143701, South Korea
关键词
promoter engineering; natural products; CRISPR/Cas9; TAR; CRISPR-CAS SYSTEMS; SACCHAROMYCES-CEREVISIAE; DRUG DISCOVERY; ACTIVATION; OLIGONUCLEOTIDES; DISRUPTION;
D O I
10.1021/acssynbio.6b00080
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The use of DNA sequencing to guide the discovery of natural products has emerged as a new paradigm for revealing chemistries encoded in bacterial genomes. A major obstacle to implementing this approach to natural product discovery is the transcriptional silence of biosynthetic gene clusters under laboratory growth conditions. Here we describe an improved yeast-based promoter engineering platform (mCRISTAR) that combines CRISPR/Cas9 and TAR to enable single-marker multiplexed promoter engineering of large gene clusters. mCRISTAR highlights the first application of the CRISPR/Cas9 system to multiplexed promoter engineering of natural product biosynthetic gene clusters. In this method, CRISPR/Cas9 is used to induce DNA double-strand breaks in promoter regions of biosynthetic gene clusters, and the resulting operon fragments are reassembled by TAR using synthetic gene cluster-specific promoter cassettes. mCRISTAR uses a CRISPR array to simplify the construction of a CRISPR plasmid for multiplex CRISPR and a single auxotrophic selection to improve the inefficiency of using a CRISPR array for multiplex gene cluster refactoring. mCRISTAR is a simple and generic method for multiplexed replacement of promoters in biosynthetic gene clusters that will facilitate the discovery of natural products from the rapidly growing collection of gene clusters found in microbial genome and metagenome sequencing projects.
引用
收藏
页码:1002 / 1010
页数:9
相关论文
共 25 条
[1]   Homology-Integrated CRISPR-Cas (HI-CRISPR) System for One-Step Multigene Disruption in Saccharomyces cerevisiae [J].
Bao, Zehua ;
Xiao, Han ;
Lang, Jing ;
Zhang, Lu ;
Xiong, Xiong ;
Sun, Ning ;
Si, Tong ;
Zhao, Huimin .
ACS SYNTHETIC BIOLOGY, 2015, 4 (05) :585-594
[2]  
Brachmann CB, 1998, YEAST, V14, P115
[3]   Insights into Secondary Metabolism from a Global Analysis of Prokaryotic Biosynthetic Gene Clusters [J].
Cimermancic, Peter ;
Medema, Marnix H. ;
Claesen, Jan ;
Kurita, Kenji ;
Brown, Laura C. Wieland ;
Mavrommatis, Konstantinos ;
Pati, Amrita ;
Godfrey, Paul A. ;
Koehrsen, Michael ;
Clardy, Jon ;
Birren, Bruce W. ;
Takano, Eriko ;
Sali, Andrej ;
Linington, Roger G. ;
Fischbach, Michael A. .
CELL, 2014, 158 (02) :412-421
[4]   Biopython']python: freely available Python']Python tools for computational molecular biology and bioinformatics [J].
Cock, Peter J. A. ;
Antao, Tiago ;
Chang, Jeffrey T. ;
Chapman, Brad A. ;
Cox, Cymon J. ;
Dalke, Andrew ;
Friedberg, Iddo ;
Hamelryck, Thomas ;
Kauff, Frank ;
Wilczynski, Bartek ;
de Hoon, Michiel J. L. .
BIOINFORMATICS, 2009, 25 (11) :1422-1423
[5]   Microbial drug discovery: 80 years of progress [J].
Demain, Arnold L. ;
Sanchez, Sergio .
JOURNAL OF ANTIBIOTICS, 2009, 62 (01) :5-16
[6]   Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems [J].
DiCarlo, James E. ;
Norville, Julie E. ;
Mali, Prashant ;
Rios, Xavier ;
Aach, John ;
Church, George M. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (07) :4336-4343
[7]   Golden Gate Shuffling: A One-Pot DNA Shuffling Method Based on Type IIs Restriction Enzymes [J].
Engler, Carola ;
Gruetzner, Ramona ;
Kandzia, Romy ;
Marillonnet, Sylvestre .
PLOS ONE, 2009, 4 (05)
[8]   High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method [J].
Gietz R.D. ;
Schiestl R.H. .
Nature Protocols, 2007, 2 (1) :31-34
[9]   The re-emergence of natural products for drug discovery in the genomics era [J].
Harvey, Alan L. ;
Edrada-Ebel, RuAngelie ;
Quinn, Ronald J. .
NATURE REVIEWS DRUG DISCOVERY, 2015, 14 (02) :111-129
[10]   The role of the novel Fem protein VanK in vancomycin resistance in Streptomyces coelicolor [J].
Hong, HJ ;
Hutchings, MI ;
Hill, LM ;
Buttner, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (13) :13055-13061