Radiomics in surgical oncology: applications and challenges

被引:2
作者
Williams, Travis L. [1 ]
Saadat, Lily V. [2 ]
Gonen, Mithat [1 ]
Wei, Alice [2 ]
Do, Richard K. G. [3 ]
Simpson, Amber L. [4 ,5 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, 1275 York Ave, New York, NY 10021 USA
[2] Mem Sloan Kettering Canc Ctr, Dept Surg, Hepatopancreatobiliary Serv, 1275 York Ave, New York, NY 10021 USA
[3] Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY USA
[4] Queens Univ, Sch Comp, Kingston, ON, Canada
[5] Queens Univ, Dept Biomed & Mol Sci, Kingston, ON, Canada
关键词
Radiomics; neoadjuvant; adjuvant; chemotherapy; machine learning; review; challenges in surgery; ADJUVANT CHEMOTHERAPY; NEOADJUVANT THERAPY; LUNG-CANCER; STAGE-I; PREDICTION; FEATURES; SURVIVAL; IMAGES; VOLUME; SCORE;
D O I
10.1080/24699322.2021.1994014
中图分类号
R61 [外科手术学];
学科分类号
摘要
Surgery is a curative treatment option for many patients with malignant tumors. Increased attention has focused on the combination of surgery with chemotherapy, as multimodality treatment has been associated with promising results in certain cancer types. Despite these data, there remains clinical equipoise on optimal timing and patient selection for neoadjuvant or adjuvant strategies. Radiomics, an emerging field involving the extraction of advanced features from radiographic images, has the potential to revolutionize oncologic treatment and contribute to the advance of personalized therapy by helping predict tumor behavior and response to therapy. This review analyzes and summarizes studies that use radiomics with machine learning in patients who have received neoadjuvant and/or adjuvant chemotherapy to predict prognosis, recurrence, survival, and therapeutic response for various cancer types. While studies in both neoadjuvant and adjuvant settings demonstrate above average performance on ability to predict progression-free and overall survival, there remain many challenges and limitations to widespread implementation of this technology. The lack of standardization of common practices to analyze radiomics, limited data sharing, and absence of auto-segmentation have hindered the inclusion and rapid adoption of radiomics in prospective, clinical studies.
引用
收藏
页码:85 / 96
页数:12
相关论文
共 73 条
  • [1] [Anonymous], 2010, BIOMARKERS CANC INTR
  • [2] Arruebo Manuel, 2011, Cancers (Basel), V3, P3279, DOI 10.3390/cancers3033279
  • [3] Preoperative risk prediction for intraductal papillary mucinous neoplasms by quantitative CT image analysis
    Attiyeh, Marc A.
    Chakraborty, Jayasree
    Gazit, Lior
    Langdon-Embry, Liana
    Gonen, Mithat
    Balachandran, Vinod P.
    D'Angelica, Michael I.
    DeMatteo, Ronald P.
    Jarnagin, William R.
    Kingham, T. Peter
    Allen, Peter J.
    Do, Richard K.
    Simpson, Amber L.
    [J]. HPB, 2019, 21 (02) : 212 - 218
  • [4] Sonography of solid breast lesions: Observer variability of lesion description and assessment
    Baker, JA
    Kornguth, PJ
    Soo, MS
    Walsh, R
    Mengoni, P
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 1999, 172 (06) : 1621 - 1625
  • [5] Balmanoukian A, 2010, ONCOLOGY-NY, V24, P234
  • [6] Conventional MRI radiomics in patients with suspected early- or pseudo-progression
    Bani-Sadr, Alexandre
    Eker, Omer Faruk
    Berner, Lise-Prune
    Ameli, Roxana
    Hermier, Marc
    Barritault, Marc
    Meyronet, David
    Guyotat, Jacques
    Jouanneau, Emmanuel
    Honnorat, Jerome
    Ducray, Francois
    Berthezene, Yves
    [J]. NEURO-ONCOLOGY ADVANCES, 2019, 1 (01)
  • [7] Radiomics of liver MRI predict metastases in mice
    Becker A.S.
    Schneider M.A.
    Wurnig M.C.
    Wagner M.
    Clavien P.A.
    Boss A.
    [J]. European Radiology Experimental, 2 (1)
  • [8] External Validation of an MRI-Derived Radiomics Model to Predict Biochemical Recurrence after Surgery for High-Risk Prostate Cancer
    Bourbonne, Vincent
    Fournier, Georges
    Vallieres, Martin
    Lucia, Francois
    Doucet, Laurent
    Tissot, Valentin
    Cuvelier, Gilles
    Hue, Stephane
    Du, Henri Le Penn
    Perdriel, Luc
    Bertrand, Nicolas
    Staroz, Frederic
    Visvikis, Dimitris
    Pradier, Olivier
    Hatt, Mathieu
    Schick, Ulrike
    [J]. CANCERS, 2020, 12 (04)
  • [9] Association of Peritumoral Radiomics With Tumor Biology and Pathologic Response to Preoperative Targeted Therapy for HER2 (ERBB2)-Positive Breast Cancer
    Braman, Nathaniel
    Prasanna, Prateek
    Whitney, Jon
    Singh, Salendra
    Beig, Niha
    Etesami, Maryam
    Bates, David D. B.
    Gallagher, Katherine
    Bloch, B. Nicolas
    Vulchi, Manasa
    Turk, Paulette
    Bera, Kaustav
    Abraham, Jame
    Sikov, William M.
    Somlo, George
    Harris, Lyndsay N.
    Gilmore, Hannah
    Plecha, Donna
    Varadan, Vinay
    Madabhushi, Anant
    [J]. JAMA NETWORK OPEN, 2019, 2 (04)
  • [10] Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI
    Braman, Nathaniel M.
    Etesami, Maryam
    Prasanna, Prateek
    Dubchuk, Christina
    Gilmore, Hannah
    Tiwari, Pallavi
    Pletcha, Donna
    Madabhushi, Anant
    [J]. BREAST CANCER RESEARCH, 2017, 19