Elucidation of reaction mechanisms of Ni2SnP in Li-ion and Na-ion systems

被引:7
作者
Marino, C. [1 ]
Dupre, N. [2 ]
Villevieille, C. [1 ]
机构
[1] Paul Scherrer Inst, Electrochem Lab, Villigen, Switzerland
[2] Univ Nantes, Inst Mat Jean Rouxel IMN, CNRS UMR 6502, Nantes, France
关键词
Negative electrode; Na-ion battery; Li-ion battery; Conversion material; X-ray absorption spectroscopy; NMR spectroscopy; NEGATIVE ELECTRODE MATERIAL; CONVERSION REACTIONS; BATTERIES; LITHIUM; PERFORMANCE; PHOSPHORUS; CUSBS2; NISB2; ANODE;
D O I
10.1016/j.jpowsour.2017.08.096
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical performance of Ni2SnP was assessed in Li-ion and Na-ion battery systems. When cycled versus Li, Ni2SnP exhibited a reversible specific charge of 700 mAh.g(-1) (theoretical specific charge: 742 mAh.g(-1)). In the Na system, the specific observed charge was ca. 200 mAh.g(-1) (theoretical specific charge: 676 mAh.g(-1)). X-ray diffraction, Ni K-edge X-ray absorption spectroscopy, and P-31 and Li-7/Na-23 nuclear magnetic resonance spectroscopy were used to elucidate the electrochemical mechanisms in both systems. Versus Li, Ni2SnP undergoes a conversion reaction resulting in the extrusion of Ni and the alloying of Li-Sn and Li-P. On delithiation, the material partially recombines into a Sn- and Ni-deficient form. In the Na system, Ni2SnP reacts through the conversion of P into Na3P. These results indicate that the recombination of the pristine material (even partially) increases cycling stability. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:339 / 347
页数:9
相关论文
共 30 条
  • [1] Direct Correlation between the 31P MAS NMR Response and the Electronic Structure of Some Transition Metal Phosphides
    Bekaert, E.
    Bernardi, J.
    Boyanov, S.
    Monconduit, L.
    Doublet, M. -L.
    Menetrier, M.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (51) : 20481 - 20490
  • [2] 7Li NMR Knight Shifts in Li-Sn Compounds: MAS NMR Measurements and Correlation with DFT Calculations
    Bekaert, Emilie
    Robert, Florent
    Lippens, Pierre Emmanuel
    Menetrier, Michel
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (14) : 6749 - 6754
  • [3] In situ X-ray diffraction characterisation of Fe0.5TiOPO4 and Cu0.5TiOPO4 as electrode material for sodium-ion batteries
    Bleith, Peter
    Kaiser, Hermann
    Novak, Petr
    Villevieille, Claire
    [J]. ELECTROCHIMICA ACTA, 2015, 176 : 18 - 21
  • [4] Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions
    Cabana, Jordi
    Monconduit, Laure
    Larcher, Dominique
    Rosa Palacin, M.
    [J]. ADVANCED MATERIALS, 2010, 22 (35) : E170 - E192
  • [5] Advanced High Energy Density Secondary Batteries with Multi-Electron Reaction Materials
    Chen, Renjie
    Luo, Rui
    Huang, Yongxin
    Wu, Feng
    Li, Li
    [J]. ADVANCED SCIENCE, 2016, 3 (10)
  • [6] Electrodeposition and electrochemical investigation of thin film Sn-Co-Ni alloy anode for lithium-ion batteries
    Gnanamuthu, R. M.
    Lee, Chang Woo
    [J]. MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2011, 176 (16): : 1329 - 1332
  • [7] Kasak P., 2006, WIPO Pat, Patent No. [WO 2007137319 A2, 2007137319]
  • [8] Conversion reactions for sodium-ion batteries
    Klein, Franziska
    Jache, Birte
    Bhide, Amrtha
    Adelhelm, Philipp
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (38) : 15876 - 15887
  • [9] The influence of metal loading and activation on mesoporous materials supported nickel phosphide hydrotreating catalysts
    Koranyi, Tamas I.
    Coumans, Alessandro E.
    Hensen, Emiel J. M.
    Ryoo, Ryong
    Kim, Hei Seung
    Pfeifer, Eva
    Kasztovszky, Zsolt
    [J]. APPLIED CATALYSIS A-GENERAL, 2009, 365 (01) : 48 - 54
  • [10] CuSbS2 as a negative electrode material for sodium ion batteries
    Marino, C.
    Block, T.
    Poettgen, R.
    Villevieille, C.
    [J]. JOURNAL OF POWER SOURCES, 2017, 342 : 616 - 622