Estimation of the capillary level input function for dynamic contrast-enhanced MRI of the breast using a deep learning approach

被引:5
作者
Bae, Jonghyun [1 ,2 ,3 ,4 ]
Huang, Zhengnan [1 ,2 ,3 ]
Knoll, Florian [2 ,3 ]
Geras, Krzysztof [2 ,3 ,5 ]
Sood, Terlika Pandit [2 ,3 ]
Feng, Li [6 ,7 ]
Heacock, Laura [2 ,3 ]
Moy, Linda [1 ,2 ,3 ]
Kim, Sungheon Gene [4 ]
机构
[1] NYU, Sch Med, Vilcek Inst Grad Biomed Sci, New York, NY USA
[2] NYU, Sch Med, Ctr Biomed Imaging, Radiol, New York, NY USA
[3] NYU, Sch Med, Ctr Adv Imaging Innovat & Res, Radiol, New York, NY USA
[4] Weill Cornell Med Coll, Dept Radiol, 405 E 61st St,Feil 1, New York, NY 10065 USA
[5] NYU, Ctr Data Sci, New York, NY USA
[6] Icahn Sch Med Mt Sinai, Biomed Engn & Imaging Inst, New York, NY 10029 USA
[7] Icahn Sch Med Mt Sinai, Dept Radiol, New York, NY 10029 USA
基金
美国国家卫生研究院;
关键词
arterial input function; breast cancer; capillary input function; deep learning; dynamic contrast enhanced MRI; HEPATOCELLULAR-CARCINOMA; AUTOMATIC SELECTION; KINETIC-PARAMETERS; PERFUSION; CANCER; BLOOD; BENIGN; TRACER; MODEL;
D O I
10.1002/mrm.29148
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose To develop a deep learning approach to estimate the local capillary-level input function (CIF) for pharmacokinetic model analysis of DCE-MRI. Methods A deep convolutional network was trained with numerically simulated data to estimate the CIF. The trained network was tested using simulated lesion data and used to estimate voxel-wise CIF for pharmacokinetic model analysis of breast DCE-MRI data using an abbreviated protocol from women with malignant (n = 25) and benign (n = 28) lesions. The estimated parameters were used to build a logistic regression model to detect the malignancy. Result The pharmacokinetic parameters estimated using the network-predicted CIF from our breast DCE data showed significant differences between the malignant and benign groups for all parameters. Testing the diagnostic performance with the estimated parameters, the conventional approach with arterial input function (AIF) showed an area under the curve (AUC) between 0.76 and 0.87, and the proposed approach with CIF demonstrated similar performance with an AUC between 0.79 and 0.81. Conclusion This study shows the feasibility of estimating voxel-wise CIF using a deep neural network. The proposed approach could eliminate the need to measure AIF manually without compromising the diagnostic performance to detect the malignancy in the clinical setting.
引用
收藏
页码:2536 / 2550
页数:15
相关论文
共 47 条
[1]   Characterization of hepatocellular carcinoma and colorectal liver metastasis by means of perfusion MRI [J].
Abdullah, Siraj Saadaldin ;
Pialat, Jean Baptiste ;
Wiart, Marlene ;
Duboeuf, Francois ;
Mabrut, Jean-Yves ;
Bancel, Brigitte ;
Rode, Agnes ;
Ducerf, Christian ;
Baulieux, Jacques ;
Berthezene, Yves .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2008, 28 (02) :390-395
[2]  
Alsop D., 2002, PROCEEDING 10 ANN M, P659
[3]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[4]   Defining a local arterial input function for perfusion MRI using independent component analysis [J].
Calamante, F ;
Morup, M ;
Hansen, LK .
MAGNETIC RESONANCE IN MEDICINE, 2004, 52 (04) :789-797
[5]   Automated Determination of Arterial Input Function for Dynamic Susceptibility Contrast MRI from Regions around Arteries Using Independent Component Analysis [J].
Chen, Sharon ;
Tyan, Yu-Chang ;
Lai, Jui-Jen ;
Chang, Chin-Ching .
RADIOLOGY RESEARCH AND PRACTICE, 2016, 2016
[6]   Cerebrovascular and blood-brain barrier impairments in Huntington's disease: Potential implications for its pathophysiology [J].
Drouin-Ouellet, Janelle ;
Sawiak, Stephen J. ;
Cisbani, Giulia ;
Lagace, Marie ;
Kuan, Wei-Li ;
Saint-Pierre, Martine ;
Dury, Richard J. ;
Alata, Wael ;
St-Amour, Isabelle ;
Mason, Sarah L. ;
Calon, Frederic ;
Lacroix, Steve ;
Gowland, Penny A. ;
Francis, Susan T. ;
Barker, Roger A. ;
Cicchetti, Francesca .
ANNALS OF NEUROLOGY, 2015, 78 (02) :160-177
[7]   Modeling Dynamic Contrast-Enhanced MRI Data with a Constrained Local AIF [J].
Duan, Chong ;
Kallehauge, Jesper F. ;
Perez-Torres, Carlos J. ;
Bretthorst, G. Larry ;
Beeman, Scott C. ;
Tanderup, Kari ;
Ackerman, Joseph J. H. ;
Garbow, Joel R. .
MOLECULAR IMAGING AND BIOLOGY, 2018, 20 (01) :150-159
[8]   Dynamic Contrast-Enhanced MRI of the Breast: Quantitative Method for Kinetic Curve Type Assessment [J].
El Khouli, Riham H. ;
Macura, Katarzyna J. ;
Jacobs, Michael A. ;
Khalil, Tarek H. ;
Kamel, Ihab R. ;
Dwyer, Andrew ;
Bluemke, David A. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2009, 193 (04) :W295-W300
[9]   An Automatic Estimation of Arterial Input Function Based on Multi-Stream 3D CNN [J].
Fan, Shengyu ;
Bian, Yueyan ;
Wang, Erling ;
Kang, Yan ;
Wang, Danny J. J. ;
Yang, Qi ;
Ji, Xunming .
FRONTIERS IN NEUROINFORMATICS, 2019, 13
[10]   GRASP-Pro: imProving GRASP DCE-MRI through self-calibrating subspace-modeling and contrast phase automation [J].
Feng, Li ;
Wen, Qiuting ;
Huang, Chenchan ;
Tong, Angela ;
Liu, Fang ;
Chandarana, Hersh .
MAGNETIC RESONANCE IN MEDICINE, 2019, 83 (01) :94-108