Transcriptome profiling of root microRNAs reveals novel insights into taproot thickening in radish (Raphanus sativus L.)

被引:27
|
作者
Yu, Rugang [1 ,2 ]
Wang, Yan [1 ]
Xu, Liang [1 ]
Zhu, Xianwen [3 ]
Zhang, Wei [1 ]
Wang, Ronghua [1 ]
Gong, Yiqin [1 ]
Limera, Cecilia [1 ]
Liu, Liwang [1 ]
机构
[1] Nanjing Agr Univ, Minist Educ PR China, Coll Hort,Engn Res Ctr Hort Crop Germplasm Enhanc, Natl Key Lab Crop Genet & Germplasm Enhancement, Nanjing 210095, Jiangsu, Peoples R China
[2] Huaibei Normal Univ, Sch Life Sci, Huaibei 235000, Anhui, Peoples R China
[3] N Dakota State Univ, Dept Plant Sci, Fargo, ND 58108 USA
来源
BMC PLANT BIOLOGY | 2015年 / 15卷
关键词
Raphanus sativus; Taproot; Thickening; microRNA; Solexa sequencing; GENOME-WIDE IDENTIFICATION; CONSERVED MICRORNAS; SYSTEM ARCHITECTURE; GENE-EXPRESSION; TARGET GENES; ARABIDOPSIS; GROWTH; FAMILY; REGULATOR; RESPONSES;
D O I
10.1186/s12870-015-0427-3
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Radish (Raphanus sativus L.) is an economically important root vegetable crop, and the taproot-thickening process is the most critical period for the final productivity and quality formation. MicroRNAs (miRNAs) are a family of non-coding small RNAs that play an important regulatory function in plant growth and development. However, the characterization of miRNAs and their roles in regulating radish taproot growth and thickening remain largely unexplored. A Solexa high-throughput sequencing technology was used to identify key miRNAs involved in taproot thickening in radish. Results: Three small RNA libraries from 'NAU-YH' taproot collected at pre-cortex splitting stage, cortex splitting stage and expanding stage were constructed. In all, 175 known and 107 potential novel miRNAs were discovered, from which 85 known and 13 novel miRNAs were found to be significantly differentially expressed during taproot thickening. Furthermore, totally 191 target genes were identified for the differentially expressed miRNAs. These target genes were annotated as transcription factors and other functional proteins, which were involved in various biological functions including plant growth and development, metabolism, cell organization and biogenesis, signal sensing and transduction, and plant defense response. RT-qPCR analysis validated miRNA expression patterns for five miRNAs and their corresponding target genes. Conclusions: The small RNA populations of radish taproot at different thickening stages were firstly identified by Solexa sequencing. Totally 98 differentially expressed miRNAs identified from three taproot libraries might play important regulatory roles in taproot thickening. Their targets encoding transcription factors and other functional proteins including NF-YA2, ILR1, bHLH74, XTH16, CEL41 and EXPA9 were involved in radish taproot thickening. These results could provide new insights into the regulatory roles of miRNAs during the taproot thickening and facilitate genetic improvement of taproot in radish.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] RsERF40 contributes to cold stress tolerance and cell expansion of taproot in radish (Raphanus sativus L.)
    Li, Cui
    Mao, Baozhen
    Wang, Kai
    Xu, Liang
    Fan, Lianxue
    Wang, Yan
    Li, Ying
    Ma, Yinbo
    Wang, Lun
    Liu, Liwang
    HORTICULTURE RESEARCH, 2023, 10 (03)
  • [32] Comparative proteomic analysis provides insight into a complex regulatory network of taproot formation in radish (Raphanus sativus L.)
    Xie, Yang
    Xu, Liang
    Wang, Yan
    Fan, Lianxue
    Chen, Yinglong
    Tang, Mingjia
    Luo, Xiaobo
    Liu, Liwang
    HORTICULTURE RESEARCH, 2018, 5
  • [33] Draft Sequences of the Radish (Raphanus sativus L.) Genome
    Kitashiba, Hiroyasu
    Li, Feng
    Hirakawa, Hideki
    Kawanabe, Takahiro
    Zou, Zhongwei
    Hasegawa, Yoichi
    Tonosaki, Kaoru
    Shirasawa, Sachiko
    Fukushima, Aki
    Yokoi, Shuji
    Takahata, Yoshihito
    Kakizaki, Tomohiro
    Ishida, Masahiko
    Okamoto, Shunsuke
    Sakamoto, Koji
    Shirasawa, Kenta
    Tabata, Satoshi
    Nishio, Takeshi
    DNA RESEARCH, 2014, 21 (05) : 481 - 490
  • [34] Transcriptome-Wide Characterization of Novel and Heat-Stress-Responsive microRNAs in Radish (Raphanus Sativus L.) Using Next-Generation Sequencing
    Ronghua Wang
    Liang Xu
    Xianwen Zhu
    Lulu Zhai
    Yan Wang
    Rugang Yu
    Yiqin Gong
    Cecilia Limera
    Liwang Liu
    Plant Molecular Biology Reporter, 2015, 33 : 867 - 880
  • [35] Transcriptome-Wide Characterization of Novel and Heat-Stress-Responsive microRNAs in Radish (Raphanus Sativus L.) Using Next-Generation Sequencing
    Wang, Ronghua
    Xu, Liang
    Zhu, Xianwen
    Zhai, Lulu
    Wang, Yan
    Yu, Rugang
    Gong, Yiqin
    Limera, Cecilia
    Liu, Liwang
    PLANT MOLECULAR BIOLOGY REPORTER, 2015, 33 (04) : 867 - 880
  • [36] Correction to: Transcriptome analyses of embryos at two developmental stages reveals important insights into oil body development and lipid accumulation in radish (Raphanus sativus L.)
    Bilin Xu
    Qingyun Li
    Haiping Xin
    Jun Xiang
    Shisheng Li
    Genetic Resources and Crop Evolution, 2022, 69 : 2621 - 2621
  • [37] Genetic control of root shape at different growth stages in radish (Raphanus sativus L.)
    Iwata, H
    Niikura, S
    Matsuura, S
    Takano, Y
    Ukai, Y
    BREEDING SCIENCE, 2004, 54 (02) : 117 - 124
  • [38] Mapping of QTLs controlling root shape and red pigmentation in radish, Raphanus sativus L.
    Tsuro, Masato
    Suwabe, Keita
    Kubo, Nakao
    Matsumoto, Satoru
    Hirai, Masashi
    BREEDING SCIENCE, 2008, 58 (01) : 55 - 61
  • [39] Anthocyanin occurrence in the root peels, petioles and flowers of red radish (Raphanus sativus L.)
    Tatsuzawa, Fumi
    Toki, Kenjiro
    Saito, Norio
    Shinoda, Koichi
    Shigihara, Atsushi
    Honda, Toshio
    DYES AND PIGMENTS, 2008, 79 (01) : 83 - 88
  • [40] Comparing cotyledon, leaf and root resistance to downy mildew in radish (Raphanus sativus L.)
    Paula S. Coelho
    Luísa Valério
    António A. Monteiro
    Euphytica, 2022, 218