The fictitious domain method for the Stokes problem with Neumann/free-traction boundary condition

被引:1
|
作者
Zhou, Guanyu [1 ]
机构
[1] Tokyo Univ Sci, Dept Appl Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan
基金
日本科学技术振兴机构;
关键词
Fictitious domain method; Penalty method; Stokes problem; Finite element method; Error estimate; FINITE-ELEMENT APPROXIMATION; INCOMPRESSIBLE VISCOUS-FLOW; MOVING RIGID BODIES; PENALTY METHOD; NUMERICAL-SIMULATION; ELLIPTIC PROBLEMS; EQUATIONS; MODEL;
D O I
10.1007/s13160-017-0255-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the fictitious domain method for the Stokes problem with Neumann/free-traction boundary condition. For the penalty method, we obtain the error estimate of order O(is an element of) where is an element of is the penalty parameter. Next, we apply the finite element method to the penalty problem using the P1/P1 element with stabilization, and obtain the error estimate of discretization. The theoretical results are verified by the numerical experiments.
引用
收藏
页码:585 / 610
页数:26
相关论文
共 50 条
  • [31] Penalty Method for the Stationary Navier–Stokes Problems Under the Slip Boundary Condition
    Guanyu Zhou
    Takahito Kashiwabara
    Issei Oikawa
    Journal of Scientific Computing, 2016, 68 : 339 - 374
  • [32] Fictitious domain finite element method for Stokes/elliptic interface problems with jump coefficients
    Sun, Pengtao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 356 : 81 - 97
  • [33] Distributed Lagrange multiplier/fictitious domain finite element method for Stokes/parabolic interface problems with jump coefficients
    Sun, Pengtao
    Wang, Cheng
    APPLIED NUMERICAL MATHEMATICS, 2020, 152 (152) : 199 - 220
  • [34] The least-square/fictitious domain method based on Navier slip boundary condition for simulation of flow-particle interaction
    Zhang, Rong
    He, Qiaolin
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 415
  • [35] Neumann problem with the integro-differential operator in the boundary condition
    Danyliuk, I. M.
    Danyliuk, A. O.
    MATHEMATICAL NOTES, 2016, 100 (5-6) : 687 - 694
  • [36] A local projection stabilization of fictitious domain method for elliptic boundary value problems
    Amdouni, S.
    Moakher, M.
    Renard, Y.
    APPLIED NUMERICAL MATHEMATICS, 2014, 76 : 60 - 75
  • [37] A novel CFS-PML boundary condition for transient electromagnetic simulation using a fictitious wave domain method
    Hu, Yanpu
    Egbert, Gary
    Ji, Yanju
    Fang, Guangyou
    RADIO SCIENCE, 2017, 52 (01) : 118 - 131
  • [38] Time periodic boundary value Stokes problem in a domain with an outlet to infinity
    Juodagalvyte, Rita
    Kaulakyte, Kristina
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2018, 23 (06): : 866 - 888
  • [39] A divergence-free finite element method for the Stokes problem with boundary correction
    Liu, Haoran
    Neilan, Michael
    Baris Otus, M.
    JOURNAL OF NUMERICAL MATHEMATICS, 2023, 31 (02) : 105 - 123
  • [40] PARALLEL CUDA IMPLEMENTATION OF THE ALGORITHM FOR SOLVING THE NAVIER-STOKES EQUATIONS USING THE FICTITIOUS DOMAIN METHOD
    Temirbekov, A. N.
    Malgazhdarov, Ye A.
    Kassenov, S. Ye
    Urmashev, B. A.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2021, 109 (01): : 63 - 75