One level density of low-lying zeros of families of L-functions

被引:11
|
作者
Gao, Peng [1 ]
Zhao, Liangyi [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
关键词
one level density; low-lying zeros; Hecke eigenforms; quadratic Dirichlet characters; cubic Dirichlet characters; quartic Dirichlet characters;
D O I
10.1112/S0010437X10004914
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove some one level density results for the low-lying zeros of families of L-functions. More specifically, the families under consideration are that of L-functions of holomorphic Hecke eigenforms of level 1 and weight k twisted with quadratic Dirichlet characters and that of cubic and quartic Dirichlet L-functions.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 47 条
  • [41] SATO-TATE EQUIDISTRIBUTION OF CERTAIN FAMILIES OF ARTIN L-FUNCTIONS
    Shankar, Arul
    Sodergren, Anders
    Templier, Nicolas
    FORUM OF MATHEMATICS SIGMA, 2019, 7
  • [42] Conditional lower bounds on the distribution of central values in families of L-functions
    Radziwill, Maksym
    Soundararajan, Kannan
    ACTA ARITHMETICA, 2024, 214 : 481 - 497
  • [43] Conditional lower bounds on the distribution of central values in families of L-functions
    Radziwill, Maksym
    Soundararajan, Kannan
    ACTA ARITHMETICA, 2024,
  • [44] The shifted fourth moment of automorphic L-functions of prime power level
    Balkanova, Olga
    ACTA ARITHMETICA, 2016, 174 (02) : 121 - 174
  • [45] n-level densities for twisted cubic Dirichlet L-functions
    Cho, Peter J.
    Park, Jeongho
    JOURNAL OF NUMBER THEORY, 2019, 196 : 139 - 155
  • [46] Extending the support of 1-and 2-level densities for cusp form L-functions under square-root cancellation hypotheses
    Mauro, Annika
    Miller, Jack B.
    Miller, Steven j.
    ACTA ARITHMETICA, 2024, : 289 - 309
  • [47] Extending the support of 1-and 2-level densities for cusp form L-functions under square-root cancellation hypotheses
    Mauro, Annika
    Miller, Jack B.
    Miller, Steven J.
    ACTA ARITHMETICA, 2024, 214 : 289 - 309