Second-Order Optimality and Beyond: Characterization and Evaluation Complexity in Convexly Constrained Nonlinear Optimization

被引:24
作者
Cartis, Coralia [1 ]
Gould, Nick I. M. [2 ]
Toint, Philippe L. [3 ,4 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
[2] Rutherford Appleton Lab, Numer Anal Grp, Chilton OX11 0QX, England
[3] Univ Namur, Namur Ctr Complex Syst naXys, 61 Rue Bruxelles, B-5000 Namur, Belgium
[4] Univ Namur, Dept Math, 61 Rue Bruxelles, B-5000 Namur, Belgium
基金
英国工程与自然科学研究理事会;
关键词
Nonlinear optimization; High-order optimality conditions; Complexity theory; Machine learning; WORST-CASE COMPLEXITY; TRUST-REGION METHODS; CUBIC REGULARIZATION; LEAST-SQUARES; ALGORITHMS; BOUNDS; ORDER; SET;
D O I
10.1007/s10208-017-9363-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
High-order optimality conditions for convexly constrained nonlinear optimization problems are analysed. A corresponding (expensive) measure of criticality for arbitrary order is proposed and extended to define high-order -approximate critical points. This new measure is then used within a conceptual trust-region algorithm to show that if derivatives of the objective function up to order can be evaluated and are Lipschitz continuous, then this algorithm applied to the convexly constrained problem needs at most evaluations of f and its derivatives to compute an -approximate qth-order critical point. This provides the first evaluation complexity result for critical points of arbitrary order in nonlinear optimization. An example is discussed, showing that the obtained evaluation complexity bounds are essentially sharp.
引用
收藏
页码:1073 / 1107
页数:35
相关论文
共 55 条
  • [11] WORST-CASE COMPLEXITY OF SMOOTHING QUADRATIC REGULARIZATION METHODS FOR NON-LIPSCHITZIAN OPTIMIZATION
    Bian, Wei
    Chen, Xiaojun
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (03) : 1718 - 1741
  • [12] Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models
    Birgin, E. G.
    Gardenghi, J. L.
    Martinez, J. M.
    Santos, S. A.
    Toint, Ph. L.
    [J]. MATHEMATICAL PROGRAMMING, 2017, 163 (1-2) : 359 - 368
  • [13] EVALUATION COMPLEXITY FOR NONLINEAR CONSTRAINED OPTIMIZATION USING UNSCALED KKT CONDITIONS AND HIGH-ORDER MODELS
    Birgin, E. G.
    Gardenghi, J. L.
    Martinez, J. M.
    Santos, S. A.
    Toint, Ph. L.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (02) : 951 - 967
  • [14] Second order optimality conditions based on parabolic second order tangent sets
    Bonnans, JF
    Cominetti, R
    Shapiro, A
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1999, 9 (02) : 466 - 492
  • [15] Boumal N., 2016, ARXIV160508101 OXF U
  • [16] The pth-order optimality conditions for inequality constrained optimization problems
    Brezhneva, O. A.
    Tret'yakov, A. A.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) : E1357 - E1366
  • [17] Optimality conditions for degenerate extremum problems with equality constraints
    Brezhneva, OA
    Tret'yakov, AA
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (02) : 729 - 745
  • [18] Global convergence rate analysis of unconstrained optimization methods based on probabilistic models
    Cartis, C.
    Scheinberg, K.
    [J]. MATHEMATICAL PROGRAMMING, 2018, 169 (02) : 337 - 375
  • [19] Worst-case evaluation complexity of non-monotone gradient-related algorithms for unconstrained optimization
    Cartis, C.
    Sampaio, Ph R.
    Toint, Ph L.
    [J]. OPTIMIZATION, 2015, 64 (05) : 1349 - 1361
  • [20] An adaptive cubic regularization algorithm for nonconvex optimization with convex constraints and its function-evaluation complexity
    Cartis, C.
    Gould, N. I. M.
    Toint, Ph. L.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (04) : 1662 - 1695