The trRosetta server for fast and accurate protein structure prediction

被引:414
作者
Du, Zongyang [1 ]
Su, Hong [1 ]
Wang, Wenkai [1 ]
Ye, Lisha [1 ]
Wei, Hong [1 ]
Peng, Zhenling [2 ]
Anishchenko, Ivan [3 ,4 ]
Baker, David [3 ,4 ,5 ]
Yang, Jianyi [2 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin, Peoples R China
[2] Shandong Univ, Res Ctr Math & Interdisciplinary Sci, Qingdao, Shandong, Peoples R China
[3] Univ Washington, Dept Biochem, Seattle, WA USA
[4] Univ Washington, Inst Prot Design, Seattle, WA USA
[5] Univ Washington, Howard Hughes Med Inst, Seattle, WA USA
基金
中国国家自然科学基金;
关键词
HOMOLOGY DETECTION; MODEL; WEB;
D O I
10.1038/s41596-021-00628-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The trRosetta (transform-restrained Rosetta) server is a web-based platform for fast and accurate protein structure prediction, powered by deep learning and Rosetta. With the input of a protein's amino acid sequence, a deep neural network is first used to predict the inter-residue geometries, including distance and orientations. The predicted geometries are then transformed as restraints to guide the structure prediction on the basis of direct energy minimization, which is implemented under the framework of Rosetta. The trRosetta server distinguishes itself from other similar structure prediction servers in terms of rapid and accurate de novo structure prediction. As an illustration, trRosetta was applied to two Pfam families with unknown structures, for which the predicted de novo models were estimated to have high accuracy. Nevertheless, to take advantage of homology modeling, homologous templates are used as additional inputs to the network automatically. In general, it takes similar to 1 h to predict the final structure for a typical protein with similar to 300 amino acids, using a maximum of 10 CPU cores in parallel in our cluster system. To enable large-scale structure modeling, a downloadable package of trRosetta with open-source codes is available as well. A detailed guidance for using the package is also available in this protocol.
引用
收藏
页码:5634 / 5651
页数:18
相关论文
共 50 条
[1]   Accurate prediction of protein structures and interactions using a three-track neural network [J].
Baek, Minkyung ;
DiMaio, Frank ;
Anishchenko, Ivan ;
Dauparas, Justas ;
Ovchinnikov, Sergey ;
Lee, Gyu Rie ;
Wang, Jue ;
Cong, Qian ;
Kinch, Lisa N. ;
Schaeffer, R. Dustin ;
Millan, Claudia ;
Park, Hahnbeom ;
Adams, Carson ;
Glassman, Caleb R. ;
DeGiovanni, Andy ;
Pereira, Jose H. ;
Rodrigues, Andria V. ;
van Dijk, Alberdina A. ;
Ebrecht, Ana C. ;
Opperman, Diederik J. ;
Sagmeister, Theo ;
Buhlheller, Christoph ;
Pavkov-Keller, Tea ;
Rathinaswamy, Manoj K. ;
Dalwadi, Udit ;
Yip, Calvin K. ;
Burke, John E. ;
Garcia, K. Christopher ;
Grishin, Nick V. ;
Adams, Paul D. ;
Read, Randy J. ;
Baker, David .
SCIENCE, 2021, 373 (6557) :871-+
[2]   SARS-CoV-2 Disrupts Splicing, Translation, and Protein Trafficking to Suppress Host Defenses [J].
Banerjee, Abhik K. ;
Blanco, Mario R. ;
Bruce, Emily A. ;
Honson, Drew D. ;
Chen, Linlin M. ;
Chow, Amy ;
Bhat, Prashant ;
Ollikainen, Noah ;
Quinodoz, Sofia A. ;
Loney, Colin ;
Thai, Jasmine ;
Miller, Zachary D. ;
Lin, Aaron E. ;
Schmidt, Madaline M. ;
Stewart, Douglas G. ;
Goldfarb, Daniel ;
De Lorenzo, Giuditta ;
Rihn, Suzannah J. ;
Voorhees, Rebecca M. ;
Botten, Jason W. ;
Majumdar, Devdoot ;
Guttman, Mitchell .
CELL, 2020, 183 (05) :1325-+
[3]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[4]   'IT WILL CHANGE EVERYTHING': DEEPMIND'S AI MAKES GIGANTIC LEAP IN SOLVING PROTEIN STRUCTURES [J].
Callaway, Ewen .
NATURE, 2020, 588 (7837) :203-204
[5]   mTM-align: a server for fast protein structure database search and multiple protein structure alignment [J].
Dong, Runze ;
Pan, Shuo ;
Peng, Zhenling ;
Zhang, Yang ;
Yang, Jianyi .
NUCLEIC ACIDS RESEARCH, 2018, 46 (W1) :W380-W386
[6]   Profile hidden Markov models [J].
Eddy, SR .
BIOINFORMATICS, 1998, 14 (09) :755-763
[7]   Res2Net: A New Multi-Scale Backbone Architecture [J].
Gao, Shang-Hua ;
Cheng, Ming-Ming ;
Zhao, Kai ;
Zhang, Xin-Yu ;
Yang, Ming-Hsuan ;
Torr, Philip .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (02) :652-662
[8]   Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms [J].
Gordon, David E. ;
Hiatt, Joseph ;
Bouhaddou, Mehdi ;
Rezelj, Veronica V. ;
Ulferts, Svenja ;
Braberg, Hannes ;
Jureka, Alexander S. ;
Obernier, Kirsten ;
Guo, Jeffrey Z. ;
Batra, Jyoti ;
Kaake, Robyn M. ;
Weckstein, Andrew R. ;
Owens, Tristan W. ;
Gupta, Meghna ;
Pourmal, Sergei ;
Titus, Erron W. ;
Cakir, Merve ;
Soucheray, Margaret ;
McGregor, Michael ;
Cakir, Zeynep ;
Jang, Gwendolyn ;
O'Meara, Matthew J. ;
Tummino, Tia A. ;
Zhang, Ziyang ;
Foussard, Helene ;
Rojc, Ajda ;
Zhou, Yuan ;
Kuchenov, Dmitry ;
Huttenhain, Ruth ;
Xu, Jiewei ;
Eckhardt, Manon ;
Swaney, Danielle L. ;
Fabius, Jacqueline M. ;
Ummadi, Manisha ;
Tutuncuoglu, Beril ;
Rathore, Ujjwal ;
Modak, Maya ;
Haas, Paige ;
Haas, Kelsey M. ;
Naing, Zun Zar Chi ;
Pulido, Ernst H. ;
Shi, Ying ;
Barrio-Hernandez, Inigo ;
Memon, Danish ;
Petsalaki, Eirini ;
Dunham, Alistair ;
Marrero, Miguel Correa ;
Burke, David ;
Koh, Cassandra ;
Vallet, Thomas .
SCIENCE, 2020, 370 (6521) :1181-+
[9]   Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints [J].
Greener, Joe G. ;
Kandathil, Shaun M. ;
Jones, David T. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]   SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling [J].
Guex, N ;
Peitsch, MC .
ELECTROPHORESIS, 1997, 18 (15) :2714-2723