The trRosetta server for fast and accurate protein structure prediction

被引:370
作者
Du, Zongyang [1 ]
Su, Hong [1 ]
Wang, Wenkai [1 ]
Ye, Lisha [1 ]
Wei, Hong [1 ]
Peng, Zhenling [2 ]
Anishchenko, Ivan [3 ,4 ]
Baker, David [3 ,4 ,5 ]
Yang, Jianyi [2 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin, Peoples R China
[2] Shandong Univ, Res Ctr Math & Interdisciplinary Sci, Qingdao, Shandong, Peoples R China
[3] Univ Washington, Dept Biochem, Seattle, WA USA
[4] Univ Washington, Inst Prot Design, Seattle, WA USA
[5] Univ Washington, Howard Hughes Med Inst, Seattle, WA USA
基金
中国国家自然科学基金;
关键词
HOMOLOGY DETECTION; MODEL; WEB;
D O I
10.1038/s41596-021-00628-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The trRosetta (transform-restrained Rosetta) server is a web-based platform for fast and accurate protein structure prediction, powered by deep learning and Rosetta. With the input of a protein's amino acid sequence, a deep neural network is first used to predict the inter-residue geometries, including distance and orientations. The predicted geometries are then transformed as restraints to guide the structure prediction on the basis of direct energy minimization, which is implemented under the framework of Rosetta. The trRosetta server distinguishes itself from other similar structure prediction servers in terms of rapid and accurate de novo structure prediction. As an illustration, trRosetta was applied to two Pfam families with unknown structures, for which the predicted de novo models were estimated to have high accuracy. Nevertheless, to take advantage of homology modeling, homologous templates are used as additional inputs to the network automatically. In general, it takes similar to 1 h to predict the final structure for a typical protein with similar to 300 amino acids, using a maximum of 10 CPU cores in parallel in our cluster system. To enable large-scale structure modeling, a downloadable package of trRosetta with open-source codes is available as well. A detailed guidance for using the package is also available in this protocol.
引用
收藏
页码:5634 / 5651
页数:18
相关论文
共 50 条
  • [1] De novo protein design by deep network hallucination
    Anishchenko, Ivan
    Pellock, Samuel J.
    Chidyausiku, Tamuka M.
    Ramelot, Theresa A.
    Ovchinnikov, Sergey
    Hao, Jingzhou
    Bafna, Khushboo
    Norn, Christoffer
    Kang, Alex
    Bera, Asim K.
    DiMaio, Frank
    Carter, Lauren
    Chow, Cameron M.
    Montelione, Gaetano T.
    Baker, David
    [J]. NATURE, 2021, 600 (7889) : 547 - +
  • [2] Accurate prediction of protein structures and interactions using a three-track neural network
    Baek, Minkyung
    DiMaio, Frank
    Anishchenko, Ivan
    Dauparas, Justas
    Ovchinnikov, Sergey
    Lee, Gyu Rie
    Wang, Jue
    Cong, Qian
    Kinch, Lisa N.
    Schaeffer, R. Dustin
    Millan, Claudia
    Park, Hahnbeom
    Adams, Carson
    Glassman, Caleb R.
    DeGiovanni, Andy
    Pereira, Jose H.
    Rodrigues, Andria V.
    van Dijk, Alberdina A.
    Ebrecht, Ana C.
    Opperman, Diederik J.
    Sagmeister, Theo
    Buhlheller, Christoph
    Pavkov-Keller, Tea
    Rathinaswamy, Manoj K.
    Dalwadi, Udit
    Yip, Calvin K.
    Burke, John E.
    Garcia, K. Christopher
    Grishin, Nick V.
    Adams, Paul D.
    Read, Randy J.
    Baker, David
    [J]. SCIENCE, 2021, 373 (6557) : 871 - +
  • [3] SARS-CoV-2 Disrupts Splicing, Translation, and Protein Trafficking to Suppress Host Defenses
    Banerjee, Abhik K.
    Blanco, Mario R.
    Bruce, Emily A.
    Honson, Drew D.
    Chen, Linlin M.
    Chow, Amy
    Bhat, Prashant
    Ollikainen, Noah
    Quinodoz, Sofia A.
    Loney, Colin
    Thai, Jasmine
    Miller, Zachary D.
    Lin, Aaron E.
    Schmidt, Madaline M.
    Stewart, Douglas G.
    Goldfarb, Daniel
    De Lorenzo, Giuditta
    Rihn, Suzannah J.
    Voorhees, Rebecca M.
    Botten, Jason W.
    Majumdar, Devdoot
    Guttman, Mitchell
    [J]. CELL, 2020, 183 (05) : 1325 - +
  • [4] The Protein Data Bank
    Berman, HM
    Westbrook, J
    Feng, Z
    Gilliland, G
    Bhat, TN
    Weissig, H
    Shindyalov, IN
    Bourne, PE
    [J]. NUCLEIC ACIDS RESEARCH, 2000, 28 (01) : 235 - 242
  • [5] 'IT WILL CHANGE EVERYTHING': DEEPMIND'S AI MAKES GIGANTIC LEAP IN SOLVING PROTEIN STRUCTURES
    Callaway, Ewen
    [J]. NATURE, 2020, 588 (7837) : 203 - 204
  • [6] mTM-align: a server for fast protein structure database search and multiple protein structure alignment
    Dong, Runze
    Pan, Shuo
    Peng, Zhenling
    Zhang, Yang
    Yang, Jianyi
    [J]. NUCLEIC ACIDS RESEARCH, 2018, 46 (W1) : W380 - W386
  • [7] Profile hidden Markov models
    Eddy, SR
    [J]. BIOINFORMATICS, 1998, 14 (09) : 755 - 763
  • [8] Res2Net: A New Multi-Scale Backbone Architecture
    Gao, Shang-Hua
    Cheng, Ming-Ming
    Zhao, Kai
    Zhang, Xin-Yu
    Yang, Ming-Hsuan
    Torr, Philip
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (02) : 652 - 662
  • [9] Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms
    Gordon, David E.
    Hiatt, Joseph
    Bouhaddou, Mehdi
    Rezelj, Veronica V.
    Ulferts, Svenja
    Braberg, Hannes
    Jureka, Alexander S.
    Obernier, Kirsten
    Guo, Jeffrey Z.
    Batra, Jyoti
    Kaake, Robyn M.
    Weckstein, Andrew R.
    Owens, Tristan W.
    Gupta, Meghna
    Pourmal, Sergei
    Titus, Erron W.
    Cakir, Merve
    Soucheray, Margaret
    McGregor, Michael
    Cakir, Zeynep
    Jang, Gwendolyn
    O'Meara, Matthew J.
    Tummino, Tia A.
    Zhang, Ziyang
    Foussard, Helene
    Rojc, Ajda
    Zhou, Yuan
    Kuchenov, Dmitry
    Huttenhain, Ruth
    Xu, Jiewei
    Eckhardt, Manon
    Swaney, Danielle L.
    Fabius, Jacqueline M.
    Ummadi, Manisha
    Tutuncuoglu, Beril
    Rathore, Ujjwal
    Modak, Maya
    Haas, Paige
    Haas, Kelsey M.
    Naing, Zun Zar Chi
    Pulido, Ernst H.
    Shi, Ying
    Barrio-Hernandez, Inigo
    Memon, Danish
    Petsalaki, Eirini
    Dunham, Alistair
    Marrero, Miguel Correa
    Burke, David
    Koh, Cassandra
    Vallet, Thomas
    [J]. SCIENCE, 2020, 370 (6521) : 1181 - +
  • [10] Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints
    Greener, Joe G.
    Kandathil, Shaun M.
    Jones, David T.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)