GLOBAL ASYMPTOTICS TOWARD THE RAREFACTION WAVES FOR SOLUTIONS TO THE CAUCHY PROBLEM OF THE SCALAR CONSERVATION LAW WITH NONLINEAR VISCOSITY

被引:0
作者
Matsumura, Akitaka [1 ]
Yoshida, Natsumi [2 ,3 ]
机构
[1] Osaka Univ, Dept Pure & Appl Math, Grad Sch Informat Sci & Technol, Suita, Osaka 5650871, Japan
[2] Ritswneikan Univ, OIC Res Org, Ibaraki, Osaka 5678570, Japan
[3] Doshisha Univ, Fac Culture & Informat Sci, Kyoto 6100394, Japan
关键词
MULTIWAVE PATTERN; DECAY PROPERTIES; BURGERS-EQUATION; BEHAVIOR; DIFFUSION; STABILITY; SYSTEMS; FLUX;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the asymptotic behavior of solutions to the Cauchy problem for the scalar viscous conservation law where the far field states are prescribed. Especially, we deal with the case when the viscosity is of non-Newtonian type, including a pseudo-plastic case. When the corresponding Riemann problem for the hyperbolic part admits a Riemann solution which consists of single rarefaction wave, under a condition on nonlinearity of the viscosity, it is proved that the solution of the Cauchy problem tends toward the rarefaction wave as time goes to infinity, without any smallness conditions.
引用
收藏
页码:187 / 205
页数:19
相关论文
共 48 条
  • [1] [Anonymous], 2015, SURIKAISEKIKENKYUSHO
  • [2] Barenblatt G.I., 1955, Prikl. Mat. Mekh, V19, P61
  • [3] Carrillo JA, 2000, INDIANA U MATH J, V49, P113
  • [4] Chhabra R.P., Non-Newtonian Fluids: An Introduction
  • [5] Chhabra R.P., 2006, BUBBLES DROPS PARTIC
  • [6] Chhabra RP, 2008, NON-NEWTONIAN FLOW AND APPLIED RHEOLOGY: ENGINEERING APPLICATIONS, 2ND EDITION, P1
  • [7] Vázquez JD, 2006, CUADERNOS HISPANOAM, P33
  • [8] De Waele A.A., 1923, J. Oil Colour Chem. Assoc, V6, P33
  • [9] ANALYSIS OF A LADYZHENSKAYA MODEL FOR INCOMPRESSIBLE VISCOUS-FLOW
    DU, Q
    GUNZBURGER, MD
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 155 (01) : 21 - 45
  • [10] DIFFUSION OF BIOLOGICAL POPULATIONS
    GURTIN, ME
    MACCAMY, RC
    [J]. MATHEMATICAL BIOSCIENCES, 1977, 33 (1-2) : 35 - 49