THE INTERIOR TRANSMISSION EIGENVALUE PROBLEM

被引:63
作者
Cakoni, Fioralba [1 ]
Colton, David [1 ]
Gintides, Drossos [2 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
[2] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
关键词
interior transmission problem; transmission eigenvalues; inhomogeneous medium; inverse scattering; SPHERICALLY SYMMETRICAL SPEED; FAR-FIELD DATA; EXISTENCE; SOUND;
D O I
10.1137/100793542
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the inverse problem of determining the spherically symmetric index of refraction n(r) from a knowledge of the corresponding transmission eigenvalues (which can be determined from field pattern of the scattered wave). We also show that for constant index of refraction n(r) = n, the smallest transmission eigenvalue suffices to determine n, complex eigenvalues exist for n sufficiently small and, for homogeneous media of general shape, determine a region in the complex plane where complex eigenvalues must lie.
引用
收藏
页码:2912 / 2921
页数:10
相关论文
共 15 条
[1]  
CAKONI F, 2007, INVERSE PROBL IMAG, V1, P13
[2]   On the determination of Dirichlet or transmission eigenvalues from far field data [J].
Cakoni, Fioralba ;
Colton, David ;
Haddar, Houssem .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (7-8) :379-383
[3]   THE EXISTENCE OF AN INFINITE DISCRETE SET OF TRANSMISSION EIGENVALUES [J].
Cakoni, Fioralba ;
Gintides, Drossos ;
Haddar, Houssem .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (01) :237-255
[4]   THE COMPUTATION OF LOWER BOUNDS FOR THE NORM OF THE INDEX OF REFRACTION IN AN ANISOTROPIC MEDIA FROM FAR FIELD DATA [J].
Cakoni, Fioralba ;
Colton, David ;
Haddar, Houssem .
JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2009, 21 (02) :203-227
[5]  
COLTON D, 1972, Q J MECH APPL MATH, V32, P53
[6]  
Colton D., 1998, INVERSE ACOUSTIC ELE
[7]  
Colton D., 1980, ANAL THEORY PARTIAL
[8]  
Colton D., 1983, INTEGRAL EQUATION ME
[9]   The interior transmission problem [J].
Colton, David ;
Paeivaerinta, Lassi ;
Sylvester, John .
INVERSE PROBLEMS AND IMAGING, 2007, 1 (01) :13-28
[10]  
Davis PJ, 1975, INTERPOLATION APPROX