CHARACTERIZATION OF NONLINEAR BESOV SPACES

被引:7
作者
Liu, Chong [1 ]
Promel, David J. [2 ]
Teichmann, Josef [1 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
[2] Univ Oxford, Oxford, England
关键词
Atomic decomposition; Besov space; embedding theorem; metric space; p-variation; fractional Sobolev space; THEOREM; MULTIPLIERS;
D O I
10.1090/tran/7968
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The canonical generalizations of two classical norms on Besov spaces are shown to be equivalent even in the case of nonlinear Besov spaces, that is, function spaces consisting of functions taking values in a metric space and equipped with some Besov-type topology. The proofs are based on atomic decomposition techniques and metric embeddings. Additionally, we provide embedding results showing how nonlinear Besov spaces embed in nonlinear p-variation spaces, and vice versa. We emphasize that we assume neither the unconditional martingale difference property of the involved spaces nor their separability.
引用
收藏
页码:529 / 550
页数:22
相关论文
共 32 条