RNA Polymerase II Subunits Link Transcription and mRNA Decay to Translation

被引:152
作者
Harel-Sharvit, Liat [1 ]
Eldad, Naama [1 ]
Haimovich, Gal [1 ]
Barkai, Oren [1 ]
Duek, Lea [1 ]
Choder, Mordechai [1 ]
机构
[1] Technion Israel Inst Technol, Rappaport Fac Med, Dept Mol Microbiol, IL-31096 Haifa, Israel
基金
以色列科学基金会;
关键词
P-BODIES; SACCHAROMYCES-CEREVISIAE; DEPENDENT TRANSLATION; INITIATION-FACTORS; YEAST; PROTEIN; RPB4; COMPLEX; MUTATIONS; BINDING;
D O I
10.1016/j.cell.2010.10.033
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Little is known about crosstalk between the eukaryotic transcription and translation machineries that operate in different cell compartments. The yeast proteins Rpb4p and Rpb7p represent one such link as they form a heterodimer that shuttles between the nucleus, where it functions in transcription, and the cytoplasm, where it functions in the major mRNA decay pathways. Here we show that the Rpb4/7 heterodimer interacts physically and functionally with components of the translation initiation factor 3 (eIF3), and is required for efficient translation initiation. Efficient translation in the cytoplasm depends on association of Rpb4/7 with RNA polymerase II (Pol II) in the nucleus, leading to a model in which Pol II remotely controls translation. Hence, like in prokaryotes, the eukaryotic translation is coupled to transcription. We propose that Rpb4/7, through its interactions at each step in the mRNA life-cycle, represents a class of factors, "mRNA coordinators," which integrate the various stages of gene expression into a system.
引用
收藏
页码:552 / 563
页数:12
相关论文
共 59 条
[1]   A novel inhibitor of cap-dependent translation initiation in yeast: P20 competes with eIF4G for binding to eIF4E [J].
Altmann, M ;
Schmitz, N ;
Berset, C ;
Trachsel, H .
EMBO JOURNAL, 1997, 16 (05) :1114-1121
[2]   Structures of complete RNA polymerase II and its subcomplex, Rpb4/7 [J].
Armache, KJ ;
Mitterweger, S ;
Meinhart, A ;
Cramer, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (08) :7131-7134
[3]   Architecture of initiation-competent 12-subunit RNA polymerase II [J].
Armache, KJ ;
Kettenberger, H ;
Cramer, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (12) :6964-6968
[4]   A multifactor complex of eukaryotic initiation factors, eIE1, eIF2, eIF3, eIF5, and initiator tRNAMet is an important translation initiation intermediate in vivo [J].
Asano, K ;
Clayton, J ;
Shalev, A ;
Hinnebusch, AG .
GENES & DEVELOPMENT, 2000, 14 (19) :2534-2546
[5]   Complex formation by all five homologues of mammalian translation initiation factor 3 subunits from yeast Saccharomyces cerevisiae [J].
Asano, K ;
Phan, L ;
Anderson, J ;
Hinnebusch, AG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (29) :18573-18585
[6]   Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs [J].
Balagopal, Vidya ;
Parker, Roy .
CURRENT OPINION IN CELL BIOLOGY, 2009, 21 (03) :403-408
[7]  
BEELMAN CA, 1994, J BIOL CHEM, V269, P9687
[8]   Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies [J].
Brengues, M ;
Teixeira, D ;
Parker, R .
SCIENCE, 2005, 310 (5747) :486-489
[9]   Accumulation of polyadenylated mRNA, Pab1, eIF4E, and eIF4G with P-bodies in Saccharomyces cerevisiae [J].
Brengues, Muriel ;
Parker, Roy .
MOLECULAR BIOLOGY OF THE CELL, 2007, 18 (07) :2592-2602
[10]   Pre-mRNA processing factors are required for nuclear export [J].
Brodsky, AS ;
Silver, PA .
RNA, 2000, 6 (12) :1737-1749