Improved LSTM-based Prediction Method for Highly Variable Workload and Resources in Clouds

被引:0
|
作者
Li, Shuang [1 ]
Bi, Jing [1 ]
Yuan, Haitao [2 ]
Zhou, MengChu [3 ]
Zhang, Jia [4 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[2] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China
[3] New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA
[4] Southern Methodist Univ, Dept Comp Sci, Dallas, TX 75275 USA
来源
2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC) | 2020年
基金
中国国家自然科学基金;
关键词
Cloud computing systems; hybrid prediction; resource provisioning; BG-LSTM; artificial intelligence; deep learning; Savitzky-Golay filter; NEURAL-NETWORK; ARIMA MODEL; TIME;
D O I
10.1109/smc42975.2020.9283029
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A large number of services provided by cloud/edge computing systems have become the most important part of Internet services. In spite of their numerous benefits, cloud/edge providers face some challenging issues, e.g., inaccurate prediction of large-scale workload and resource usage traces. However, due to the complexity of cloud computing environments, workload and resource usage traces are highly-variable, thus making it difficult for traditional models to predict them accurately. Traditional models fail to deal with nonlinear characteristics and long-term memory dependencies. To solve this problem, this work proposes an integrated prediction method that combines Bi-directional and Grid Long Short-Term Memory network (BG-LSTM) models to predict workload and resource usage traces. In this method, workload and resource usage traces are first smoothed by a Savitzky-Golay filter to eliminate their extreme points and noise interference. Then, an integrated prediction model is established to achieve accurate prediction for highly-variable traces. Using real-world workload and resource usage traces from Google cloud data centers, we have conducted extensive experiments to show the effectiveness and adaptability of BG-LSTM for different traces. The performance results well demonstrate that BG-LSTM achieves better prediction results than some typical prediction methods for highly-variable real-world cloud systems.
引用
收藏
页码:1206 / 1211
页数:6
相关论文
共 50 条
  • [1] An Improved LSTM-Based Prediction Approach for Resources and Workload in Large-Scale Data Centers
    Yuan, Haitao
    Bi, Jing
    Li, Shuang
    Zhang, Jia
    Zhou, MengChu
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (12): : 22816 - 22829
  • [2] LSTM-based Models for Earthquake Prediction
    Berhich, Asmae
    Belouadha, Fatima-Zahra
    Kabbaj, Mohammed Issam
    3RD INTERNATIONAL CONFERENCE ON NETWORKING, INFORMATION SYSTEM & SECURITY (NISS'20), 2020,
  • [3] LSTM-based traffic flow prediction with missing data
    Tian, Yan
    Zhang, Kaili
    Li, Jianyuan
    Lin, Xianxuan
    Yang, Bailin
    NEUROCOMPUTING, 2018, 318 : 297 - 305
  • [4] LSTM-based throughput prediction for LTE networks
    Na, Hyeonjun
    Shin, Yongjoo
    Lee, Dongwon
    Lee, Joohyun
    ICT EXPRESS, 2023, 9 (02): : 247 - 252
  • [5] LSTM-based Frequency Hopping Sequence Prediction
    Li, Gao
    Xu, Jianliang
    Shen, Weiguo
    Wang, Wei
    Liu, Zitong
    Ding, Guoru
    2020 12TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2020, : 472 - 477
  • [6] A Hierarchical LSTM-Based Vehicle Trajectory Prediction Method Considering Interaction Information
    Min, Haitao
    Xiong, Xiaoyong
    Wang, Pengyu
    Zhang, Zhaopu
    AUTOMOTIVE INNOVATION, 2024, 7 (01) : 71 - 81
  • [7] A LSTM-Based Method for Comprehension and Evaluation of Network Security Situation
    Li, Shixuan
    Zhao, Dongmei
    2019 18TH IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS/13TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA SCIENCE AND ENGINEERING (TRUSTCOM/BIGDATASE 2019), 2019, : 723 - 728
  • [8] Taxi Demand Prediction with LSTM-based Combination Model
    Lai, Yongxuan
    Zhang, Kaixin
    Lin, Junqiang
    Yang, Fan
    Fan, Yi
    2019 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2019), 2019, : 944 - 950
  • [9] A LSTM-based Deep Learning Method with Application to Voltage Dip Classification
    Balouji, Ebrahim
    Gu, Irene Y. H.
    Bollen, Math H. J.
    Bagheri, Azam
    Nazari, Mahmood
    2018 18TH INTERNATIONAL CONFERENCE ON HARMONICS AND QUALITY OF POWER (ICHQP), 2018,
  • [10] Method for LSTM-Based Cascade Hydropower Plant Scheduling
    Cai, Zhi
    Zhang, Guofang
    Lu, Yi
    Li, Yuxuan
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 140 - 144