London Dispersion Corrections to Density Functional Theory for Transition Metals Based on Fitting to Experimental Temperature-Programmed Desorption of Benzene Monolayers

被引:2
作者
Yang, Hao [1 ]
Cheng, Tao [1 ]
Goddard, William A., III
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Peoples R China
基金
中国博士后科学基金; 美国国家科学基金会; 中国国家自然科学基金;
关键词
REDUCTION; PT(111); ENERGY;
D O I
10.1021/acs.jpclett.0c03126
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Standard implementations of generalized gradient approximation (GGA)-based density functional theory (DFT) describe well strongly bound molecules and solids but fail to describe long-range London dispersion or van der Waals (vdW) attraction interactions that are important in molecular crystals and two-dimensional solids. To provide accurate values for the vdW distance and energies for the metals Cu, Ag, Au, Ni, Pd, and Pt, we determined empirical vdW corrections to Perdew, Burke, and Ernzerhof (PBE) DFT by fitting the experimental adsorption enthalpies measured by temperature-programmed desorption (TPD) from benzene monolayers by Campbell and co-workers (J. Phys. Chem. C 2016, 120, 25161-25172). Benzene physisorbed to these metals without chemical reaction; therefore, we consider the bonding to be vdW. We use the low gradient form for the vdW corrections, EvdW-LG = C-6LG/[R-6 + R-vdWLG(6)] with just two parameters per atom (C-6LG and R-vdWLG). This LG form leads to negligible changes in bond distances and angles, so adjusting the parameters should not sacrifice accuracy for the bonding interactions. We demonstrate that the parameters fitted to benzene also describe well the physisorption enthalpies for other hydrocarbons (naphthalene, cyclohexane, methane, ethane, and propane) on Pt. We also report low gradient vdW correction parameters for the noble gases that fit the equilibrium lattice parameter and heat of vaporization of the crystals.
引用
收藏
页码:73 / 79
页数:7
相关论文
共 19 条
  • [1] A unified density-functional treatment of dynamical, nondynamical, and dispersion correlations
    Becke, Axel D.
    Johnson, Erin R.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (12)
  • [2] Energetics of adsorbed benzene on Ni(111) and Pt(111) by calorimetry
    Carey, Spencer J.
    Zhao, Wei
    Campbell, Charles T.
    [J]. SURFACE SCIENCE, 2018, 676 : 9 - 16
  • [3] Electrochemical CO2 reduction on Au surfaces: mechanistic aspects regarding the formation of major and minor products
    Cave, Etosha R.
    Montoya, Joseph H.
    Kuhl, Kendra P.
    Abram, David N.
    Hatsukade, Toru
    Shi, Chuan
    Hahn, Christopher
    Norskov, Jens K.
    Jaramillo, Thomas F.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (24) : 15856 - 15863
  • [4] Charles Kittel., 2005, Introduction to Solid State Physics, V8th, p0
  • [5] Effect of the Damping Function in Dispersion Corrected Density Functional Theory
    Grimme, Stefan
    Ehrlich, Stephan
    Goerigk, Lars
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2011, 32 (07) : 1456 - 1465
  • [6] A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
    Grimme, Stefan
    Antony, Jens
    Ehrlich, Stephan
    Krieg, Helge
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)
  • [7] Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability
    Hautier, Geoffroy
    Ong, Shyue Ping
    Jain, Anubhav
    Moore, Charles J.
    Ceder, Gerbrand
    [J]. PHYSICAL REVIEW B, 2012, 85 (15)
  • [8] Koch W., 2000, CHEM GUIDE DENSITY F
  • [9] Mechanism of Oxygen Reduction Reaction on Pt(111) in Alkaline Solution: Importance of Chemisorbed Water on Surface
    Liu, Shizhong
    White, Michael G.
    Liu, Ping
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (28) : 15288 - 15298
  • [10] NEW VALUES OF SUBLIMATION ENERGY L0 FOR NATURAL NEON AND ITS ISOTOPES
    MCCONVILLE, GT
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1974, 60 (10) : 4093 - 4093