A matrix approach to some second-order difference equations with sign-alternating coefficients

被引:19
作者
Andelic, Milica [1 ]
Du, Zhibin [2 ,3 ]
da Fonseca, Carlos M. [4 ,5 ]
Kilic, Emrah [6 ]
机构
[1] Kuwait Univ, Dept Math, Safat, Kuwait
[2] South China Normal Univ, Sch Software, Foshan, Guangdong, Peoples R China
[3] Zhaoqing Univ, Sch Math & Stat, Zhaoqing, Peoples R China
[4] Kuwait Coll Sci & Technol, Dept Math, Safat, Kuwait
[5] Univ Primorska, FAMNIT, Glagoljsaska 8, Koper 6000, Slovenia
[6] TOBB Univ Econ & Technol, Math Dept, Ankara, Turkey
关键词
Difference equations; Fibonacci numbers; k-Toeplitz tridiagonal matrices; Chebyshev polynomials of second kind; determinant; FIBONACCI;
D O I
10.1080/10236198.2019.1709180
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyse and unify some recent results on the double sequence {yn, k}, for n, k 1, defined by the second-order difference equation yn, k = (-1) (n-1)/k yn- 1,k - yn- 2,k, with y1, k = 1 and y2, k = 0, in terms of matrix theory and orthogonal polynomials theory. Moreover, we provide a general solution to k = (-1) (n-1)/k zn- 1,k - (-1) (n-2)/a zn- 2,k, using a closely related approach. We discuss briefly other recent problems involving a general recurrence relation of second order and relate them with the existing literature.
引用
收藏
页码:149 / 162
页数:14
相关论文
共 26 条
  • [1] When do linear combinations of orthogonal polynomials yield new sequences of orthogonal polynomials?
    Alfaro, Manuel
    Marcellan, Francisco
    Pena, Ana
    Luisa Rezola, M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (06) : 1446 - 1452
  • [2] [Anonymous], 1947, Proc. Roy. Soc. Edinburgh Sect. A, DOI DOI 10.1017/S0080454100006634
  • [3] [Anonymous], 2019, The on-Line Encyclopedia of Integer Sequences
  • [4] Buschman R.G., 1963, FIBONACCI QUART, V1, P19
  • [5] Buschman R. G., 1963, FIBONACCI QUART, V1, P19
  • [6] Chihara Theodore S, 2011, An introduction to orthogonal polynomials
  • [7] Unifying some Pell and Fibonacci identities
    da Fonseca, Carlos M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 236 : 41 - 42
  • [8] da Fonseca CM, 2005, NUMER MATH, V100, P457, DOI [10.1007/s00211-005-0596-3, 10.1007/S00211-005-0596-3]
  • [9] Explicit inverses of some tridiagonal matrices
    da Fonseca, CM
    Petronilho, J
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 325 (1-3) : 7 - 21
  • [10] Elaydi S. N., 1999, An Introduction to Difference Equations, V2nd ed.