Water Sensitivity in Zn4O-Based MOFs is Structure and History Dependent

被引:94
作者
Guo, Ping [1 ]
Dutta, Dhanadeep [2 ]
Wong-Foy, Antek G. [1 ]
Gidley, David W. [2 ]
Matzger, Adam J. [1 ]
机构
[1] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
METAL-ORGANIC FRAMEWORKS; MICROPOROUS COORDINATION POLYMERS; HYDROGEN STORAGE; POSITRON-ANNIHILATION; SURFACE-AREA; STABILITY; ADSORPTION; FUNCTIONALIZATION; POROSITY; SEPARATIONS;
D O I
10.1021/ja512382f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Moisture can cause irreversible structural collapse in metal-organic frameworks (MOFs) resulting in decreased internal surface areas and pore volumes. The details of such structural collapse with regard to pore size evolution during degradation are currently unknown due to a lack of suitable in situ probes of porosity. Here we acquire MOF porosity data under dynamic conditions by incorporating a flow-through system in tandem with positronium annihilation lifetime spectroscopy (PALS). From the decrease in porosity, we have observed an induction period for water degradation of some Zn4O-based MOFs that signals much greater stability than commonly believed to be possible. The sigmoidal trend in the degradation curve of unfunctionalized MOFs caused by water vapor has been established from the temporal component of pore size evolution as characterized by in situ PALS. IRMOF-3 is found to degrade at a lower relative humidity than MOF-5, a likely consequence of the amine groups in the structure, although, in contrast to MOF-5, residual porosity remains. The presence of an induction period, which itself depends on previous water exposure of the sample (history dependence), and sigmoidal temporal behavior of the moisture-induced degradation mechanism of MOFs was also verified using powder X-ray diffraction analysis and ex situ gas adsorption measurements. Our work provides insight into porosity evolution under application-relevant conditions as well as identifying chemical and structural characteristics influencing stability.
引用
收藏
页码:2651 / 2657
页数:7
相关论文
共 50 条
[1]   Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites [J].
Bloch, Eric D. ;
Queen, Wendy L. ;
Krishna, Rajamani ;
Zadrozny, Joseph M. ;
Brown, Craig M. ;
Long, Jeffrey R. .
SCIENCE, 2012, 335 (6076) :1606-1610
[2]   Water Stability and Adsorption in Metal-Organic Frameworks [J].
Burtch, Nicholas C. ;
Jasuja, Himanshu ;
Walton, Krista S. .
CHEMICAL REVIEWS, 2014, 114 (20) :10575-10612
[3]   Water adsorption in MOFs: fundamentals and applications [J].
Canivet, Jerome ;
Fateeva, Alexandra ;
Guo, Youmin ;
Coasne, Benoit ;
Farrusseng, David .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (16) :5594-5617
[4]   A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability [J].
Cavka, Jasmina Hafizovic ;
Jakobsen, Soren ;
Olsbye, Unni ;
Guillou, Nathalie ;
Lamberti, Carlo ;
Bordiga, Silvia ;
Lillerud, Karl Petter .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (42) :13850-13851
[5]   Enhancement of the structure stability of MOF-5 confined to multiwalled carbon nanotubes [J].
Chen, Xuecheng ;
Lukaszczuk, Pawel ;
Tripisciano, Carla ;
Ruemmeli, Mark H. ;
Srenscek-Nazzal, Joanna ;
Pelech, Iwona ;
Kalenczuk, Ryszard J. ;
Borowiak-Palen, Ewa .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (11-12) :2664-2668
[6]   Water Stability of Microporous Coordination Polymers and the Adsorption of Pharmaceuticals from Water [J].
Cychosz, Katie A. ;
Matzger, Adam J. .
LANGMUIR, 2010, 26 (22) :17198-17202
[7]   Liquid phase separations by crystalline microporous coordination polymers [J].
Cychosz, Katie A. ;
Ahmad, Rashid ;
Matzger, Adam J. .
CHEMICAL SCIENCE, 2010, 1 (03) :293-302
[8]   Enabling Cleaner Fuels: Desulfurization by Adsorption to Microporous Coordination Polymers [J].
Cychosz, Katie A. ;
Wong-Foy, Antek G. ;
Matzger, Adam J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (40) :14538-14543
[9]   Enhanced Stability of Cu-BTC MOF via Perfluorohexane Plasma-Enhanced Chemical Vapor Deposition [J].
Decoste, Jared B. ;
Peterson, Gregory W. ;
Smith, Martin W. ;
Stone, Corinne A. ;
Willis, Colin R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (03) :1486-1489
[10]   Strong CO2 Binding in a Water-Stable, Triazolate-Bridged Metal-Organic Framework Functionalized with Ethylenediamine [J].
Demessence, Aude ;
D'Alessandro, Deanna M. ;
Foo, Maw Lin ;
Long, Jeffrey R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (25) :8784-+