The Effect of Cation Disorder on the Average Li Intercalation Voltage of Transition-Metal Oxides

被引:68
作者
Abdellahi, Aziz [1 ]
Urban, Alexander [2 ]
Dacek, Stephen [1 ]
Ceder, Gerbrand [2 ,3 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02141 USA
[2] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
关键词
POSITIVE ELECTRODE MATERIALS; CATHODE MATERIAL; HIGH-CAPACITY; ELECTROCHEMICAL PROPERTIES; ION BATTERIES; LITHIUM; SURFACE; EVOLUTION; SYSTEM; MN;
D O I
10.1021/acs.chemmater.6b00205
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cation disorder is a phenomenon that is becoming increasingly important for the design of high-energy lithium transition metal oxide positive electrodes (LiMO2) for Li-ion batteries. Disordered Li-excess rocksalts have recently been shown to achieve high reversible capacity, and in operando cation disorder (i.e., disorder induced by electrochemical cycling) has been observed in a large class of ordered materials. Despite the growing importance of cation disorder in the Li-ion battery field, very little is known about the effect of cation disorder on the average voltage (i.e., energy density) of lithium transition metal oxides. In this study, we use first-principles methods to demonstrate that, depending on the transition metal species, cation disorder can lead to an increase or a decrease of the average voltage of lithium transition metal oxides. We further demonstrate that the Ni3+/4+ redox can be high in disordered compounds, so that it may be preceded by oxygen activity. Finally, we establish rules for the voltage evolution of compounds that experience in operando disorder.
引用
收藏
页码:3659 / 3665
页数:7
相关论文
共 43 条
[1]   Ab initio calculation of the intercalation voltage of lithium transition metal oxide electrodes for rechargeable batteries [J].
Aydinol, MK ;
Kohan, AF ;
Ceder, G .
JOURNAL OF POWER SOURCES, 1997, 68 (02) :664-668
[2]   Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature [J].
Baudrin, E. ;
Cassaignon, S. ;
Koesch, M. ;
Jolivet, J. -P. ;
Dupont, L. ;
Tarascon, J. -M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (02) :337-342
[3]   Layered-to-Rock-Salt Transformation in Desodiated NaxCrO2 (x 0.4) [J].
Bo, Shou-Hang ;
Li, Xin ;
Toumar, Alexandra J. ;
Ceder, Gerbrand .
CHEMISTRY OF MATERIALS, 2016, 28 (05) :1419-1429
[4]   Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 during the Initial Charge/Discharge Cycle Studied by Advanced Electron Microscopy [J].
Boulineau, Adrien ;
Simonin, Loic ;
Colin, Jean-Francois ;
Canevet, Emmanuel ;
Daniel, Lise ;
Patoux, Sebastien .
CHEMISTRY OF MATERIALS, 2012, 24 (18) :3558-3566
[5]   Crystal structure and spectroscopic properties of LixNi1-yTiyO2 and their electrochemical behavior [J].
Chang, SH ;
Kang, SG ;
Song, SW ;
Yoon, JB ;
Choy, JH .
SOLID STATE IONICS, 1996, 86-8 :171-175
[6]  
deFontaine D, 1994, SOLID STATE PHYS, V47, P33
[7]  
Gaskell DR., 2008, Introduction to the Thermodynamics of Materials
[8]   Characterization of Disordered Li(1+x)Ti2xFe(1-3x)O2 as Positive Electrode Materials in Li-Ion Batteries Using Percolation Theory [J].
Glazier, Stephen L. ;
Li, Jing ;
Zhou, Jigang ;
Bond, Toby ;
Dahn, J. R. .
CHEMISTRY OF MATERIALS, 2015, 27 (22) :7751-7756
[9]   A SURVEY OF 1ST-ROW TERNARY OXIDES LISCO2, LICUO2 [J].
HEWSTON, TA ;
CHAMBERLAND, BL .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1987, 48 (02) :97-108
[10]   Investigation of Changes in the Surface Structure of LixNi0.8Co0.15Al0.05O2 Cathode Materials Induced by the Initial Charge [J].
Hwang, Sooyeon ;
Chang, Wonyoung ;
Kim, Seung Min ;
Su, Dong ;
Kim, Dong Hyun ;
Lee, Jeong Yong ;
Chung, Kyung Yoon ;
Stach, Eric A. .
CHEMISTRY OF MATERIALS, 2014, 26 (02) :1084-1092