It was shown by Rordam and the second named author that a countable group G admits an action on a. compact space such that the crossed product is a Kirchberg algebra if, and only if, G is exact and non-amenable. This construction allows a certain amount of choice. We show that different choices can lead to different algebras, at least with the free group. (c) 2016 Elsevier Inc. All rights reserved.
机构:
Univ Paris 13, Inst Galilee, F-93430 Villetaneuse, FranceAustralian Natl Univ, Ctr Math & Applicat, Inst Math Sci, Canberra, ACT 0200, Australia
Cisinski, Denis-Charles
Neeman, Amnon
论文数: 0引用数: 0
h-index: 0
机构:
Australian Natl Univ, Ctr Math & Applicat, Inst Math Sci, Canberra, ACT 0200, AustraliaAustralian Natl Univ, Ctr Math & Applicat, Inst Math Sci, Canberra, ACT 0200, Australia
机构:
Univ Paris 13, Inst Galilee, F-93430 Villetaneuse, FranceAustralian Natl Univ, Ctr Math & Applicat, Inst Math Sci, Canberra, ACT 0200, Australia
Cisinski, Denis-Charles
Neeman, Amnon
论文数: 0引用数: 0
h-index: 0
机构:
Australian Natl Univ, Ctr Math & Applicat, Inst Math Sci, Canberra, ACT 0200, AustraliaAustralian Natl Univ, Ctr Math & Applicat, Inst Math Sci, Canberra, ACT 0200, Australia