Efficient in situ generation of H2O2 by novel magnesium-carbon nanotube composites

被引:15
作者
Yang, Zhao [1 ]
Gong, Xiaobo [1 ,2 ]
Wang, Bingqing [1 ]
Yang, Dan [1 ]
Fu, Tao [1 ]
Liu, Yong [1 ,2 ]
机构
[1] Sichuan Normal Univ, Coll Chem & Mat Sci, Chengdu 610066, Sichuan, Peoples R China
[2] Sichuan Prov Higher Educ Syst, Key Lab Treatment Special Wastewater Treatment, Chengdu 610066, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
HYDROGEN-PEROXIDE; ELECTROCHEMICAL GENERATION; ENHANCED DEGRADATION; FENTON DEGRADATION; OXYGEN REDUCTION; AIR BATTERY; WASTE-WATER; SYSTEM; OXIDATION; CNTS;
D O I
10.1039/c8ra05907a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hydrogen peroxide (H2O2) is widely employed as an environmentally friendly chemical oxidant and an energy source. In this study, a novel magnesium-carbon nanotube composite was prepared by a ball milling process in argon atmosphere using polyvinylidene fluoride (PVDF) as a binder. The resulting material was then tested for the in situ generation of H2O2. The preparation and operation conditions of the composite were systemically investigated and analyzed to improve the efficiency of the in situ generation of H2O2. Under the optimized conditions, while aerating with oxygen for 60 min, a maximum H2O2 concentration of 194.73 mg L-1 was achieved by the Mg-CNTs composite prepared using Mg:CNT:PVDF with a weight ratio of 5:1:2.4. In the Mg-CNTs/O-2 system, dissolved oxygen molecules were reduced to H2O2, while magnesium was oxidized owing to the electrochemical corrosion. In addition, a part of dissolved magnesium ions converted into magnesium hydroxide and precipitated as nanoflakes on the surfaces of CNTs. A mechanism was proposed, suggesting that the formation of a magnesium/carbon nanotubes corrosion cell on the Mg-CNT composite promoted the in situ synthesis of H2O2. Overall, this study provides a promising and environmentally friendly strategy to fabricate magnesium/CNT composites for the in situ generation of H2O2, which could be applied in energy conversion and advanced oxidation processes for refractory wastewater treatment.
引用
收藏
页码:35179 / 35186
页数:8
相关论文
共 50 条
  • [41] Composite Electrodes With Carbon Supported Ru Nanoparticles For H2O2 Detection
    Januzaj, Valdrin
    Mula, Vllaznim
    Turdean, Graziella L.
    Muresan, Liana Maria
    ACTA CHIMICA SLOVENICA, 2015, 62 (01) : 28 - 34
  • [42] Janus Electrode of Asymmetric Wettability for H2O2 Production with Highly Efficient O2 Utilization
    Zhang, Haichuan
    Zhao, Yingshuang
    Li, Yingjie
    Li, Guanghe
    Li, Juan
    Zhang, Fang
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (01) : 705 - 714
  • [43] Drastic enhancement of H2O2 electro-generation by pulsed current for ibuprofen degradation: Strategy based on decoupling study on H2O2 decomposition pathways
    Zhou, Wei
    Gao, Jihui
    Ding, Yani
    Zhao, Haiqian
    Meng, Xiaoxiao
    Wang, Yan
    Kou, Kaikai
    Xu, Yiqun
    Wu, Shaohua
    Qin, Yukun
    CHEMICAL ENGINEERING JOURNAL, 2018, 338 : 709 - 718
  • [44] Efficient H2O2 generation and electro-Fenton degradation of pollutants in microchannels of oxidized monolithic-porous-carbon cathode
    Guo, Yunfei
    Wu, Shuai
    Yu, Hongtao
    Chen, Shuo
    Wang, Chunna
    Quan, Xie
    Lu, Na
    WATER SCIENCE AND TECHNOLOGY, 2019, 80 (05) : 970 - 978
  • [45] A critical assessment of the effect of carbon-based cathode properties on the in situ electrogeneration of H2O2
    Petsi, Panagiota
    Plakas, Konstantinos
    Frontistis, Zacharias
    Sires, Ignasi
    ELECTROCHIMICA ACTA, 2023, 470
  • [46] Synthesis, characterization, and in-situ H2O2 generation activity of activated Carbon/Goethite/Fe3O4/ZnO for heterogeneous electro-Fenton degradation of organics from woolen textile wastewater
    Ozturk, Dilara
    Gulcan, Mehmet
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2023, 122 : 251 - 263
  • [47] Scaling up floating air cathodes for energy-efficient H2O2 generation and electrochemical advanced oxidation processes
    Zhang, Haichuan
    Li, Yingjie
    Li, Guanghe
    Zhang, Fang
    ELECTROCHIMICA ACTA, 2019, 299 : 273 - 280
  • [48] Role of Metabolic H2O2 Generation
    Sies, Helmut
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (13) : 8735 - 8741
  • [49] A carbon felt cathode modified by acidic oxidised carbon nanotubes for the high H2O2 generation and its application in electro-Fenton
    Gao, Ying
    Xie, Fangshu
    Bai, Huiling
    Zeng, Li
    Zhang, Jingbin
    Liu, Meiyu
    Zhu, Weihuang
    ENVIRONMENTAL TECHNOLOGY, 2024, 45 (09) : 1669 - 1682
  • [50] Melamine-derived carbon electrode for efficient H2O2 electrogeneration
    Zhu, Yingshi
    Qiu, Shan
    Ma, Fang
    Li, Guojun
    Deng, Fengxia
    Zheng, Yanshi
    ELECTROCHIMICA ACTA, 2018, 261 : 375 - 383