Checklist for responsible deep learning modeling of medical images based on COVID-19 detection studies

被引:31
作者
Hryniewska, Weronika [1 ]
Bombinski, Przemyslaw [2 ]
Szatkowski, Patryk [2 ]
Tomaszewska, Paulina [1 ]
Przelaskowski, Artur [1 ]
Biecek, Przemyslaw [1 ,3 ]
机构
[1] Warsaw Univ Technol, Fac Math & Informat Sci, Warsaw, Poland
[2] Med Univ Warsaw, Dept Pediat Radiol, Warsaw, Poland
[3] Univ Warsaw, Fac Math Informat & Mech, Warsaw, Poland
关键词
COVID-19; Lungs; Computed tomography; X-ray; Explainable AI; Deep learning; CHEST-X-RAY; CLASSIFICATION; SEGMENTATION; DIAGNOSIS; CT;
D O I
10.1016/j.patcog.2021.108035
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The sudden outbreak and uncontrolled spread of COVID-19 disease is one of the most important global problems today. In a short period of time, it has led to the development of many deep neural network models for COVID-19 detection with modules for explainability. In this work, we carry out a systematic analysis of various aspects of proposed models. Our analysis revealed numerous mistakes made at different stages of data acquisition, model development, and explanation construction. In this work, we overview the approaches proposed in the surveyed Machine Learning articles and indicate typical errors emerging from the lack of deep understanding of the radiography domain. We present the perspective of both: experts in the field -radiologists and deep learning engineers dealing with model explanations. The final result is a proposed checklist with the minimum conditions to be met by a reliable COVID-19 diagnostic model. (c) 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
引用
收藏
页数:17
相关论文
共 60 条
[51]   COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images [J].
Ucar, Ferhat ;
Korkmaz, Deniz .
MEDICAL HYPOTHESES, 2020, 140
[52]  
Vaccher F., 2020, arXiv(2020)2006.04603
[53]   COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images [J].
Wang, Linda ;
Lin, Zhong Qiu ;
Wong, Alexander .
SCIENTIFIC REPORTS, 2020, 10 (01)
[54]   Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19 [J].
Wong, Ho Yuen Frank ;
Lam, Hiu Yin Sonia ;
Fong, Ambrose Ho-Tung ;
Leung, Siu Ting ;
Chin, Thomas Wing-Yan ;
Lo, Christine Shing Yen ;
Lui, Macy Mei-Sze ;
Lee, Jonan Chun Yin ;
Chiu, Keith Wan-Hang ;
Chung, Tom Wai-Hin ;
Lee, Elaine Yuen Phin ;
Wan, Eric Yuk Fai ;
Hung, Ivan Fan Ngai ;
Lam, Tina Poy Wing ;
Kuo, Michael D. ;
Ng, Ming-Yen .
RADIOLOGY, 2020, 296 (02) :E72-E78
[55]   JCS: An Explainable COVID-19 Diagnosis System by Joint Classification and Segmentation [J].
Wu, Yu-Huan ;
Gao, Shang-Hua ;
Mei, Jie ;
Xu, Jun ;
Fan, Deng-Ping ;
Zhang, Rong-Guo ;
Cheng, Ming-Ming .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :3113-3126
[56]   Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal [J].
Wynants, Laure ;
Van Calster, Ben ;
Collins, Gary S. ;
Riley, Richard D. ;
Heinze, Georg ;
Schuit, Ewoud ;
Albu, Elena ;
Arshi, Banafsheh ;
Bellou, Vanesa ;
Bonten, Marc M. J. ;
Dahly, Darren L. ;
Damen, Johanna A. ;
Debray, Thomas P. A. ;
de Jong, Valentijn M. T. ;
De Vos, Maarten ;
Dhiman, Paula ;
Ensor, Joie ;
Gao, Shan ;
Haller, Maria C. ;
Harhay, Michael O. ;
Henckaerts, Liesbet ;
Heus, Pauline ;
Hoogland, Jeroen ;
Hudda, Mohammed ;
Jenniskens, Kevin ;
Kammer, Michael ;
Kreuzberger, Nina ;
Lohmann, Anna ;
Levis, Brooke ;
Luijken, Kim ;
Ma, Jie ;
Martin, Glen P. ;
McLernon, David J. ;
Andaur Navarro, Constanza L. ;
Reitsma, Johannes B. ;
Sergeant, Jamie C. ;
Shi, Chunhu ;
Skoetz, Nicole ;
Smits, Luc J. M. ;
Snell, Kym I. E. ;
Sperrin, Matthew ;
Spijker, Rene ;
Steyerberg, Ewout W. ;
Takada, Toshihiko ;
Tzoulaki, Ioanna ;
van Kuijk, Sander M. J. ;
van Bussel, Bas C. T. ;
van der Horst, Iwan C. C. ;
Reeve, Kelly ;
van Royen, Florien S. .
BMJ-BRITISH MEDICAL JOURNAL, 2020, 369
[57]   Chest CT for Typical Coronavirus Disease 2019 (COVID-19) Pneumonia: Relationship to Negative RT-PCR Testing [J].
Xie, Xingzhi ;
Zhong, Zheng ;
Zhao, Wei ;
Zheng, Chao ;
Wang, Fei ;
Liu, Jun .
RADIOLOGY, 2020, 296 (02) :E41-E45
[58]   Multi-atlas segmentation and correction model with level set formulation for 3D brain MR images [J].
Yang, Yunyun ;
Jia, Wenjing ;
Yang, Yunna .
PATTERN RECOGNITION, 2019, 90 :450-463
[59]   Chest Radiographic and CT Findings of the 2019 Novel Coronavirus Disease (COVID-19): Analysis of Nine Patients Treated in Korea [J].
Yoon, Soon Ho ;
Lee, Kyung Hee ;
Kim, Jin Yong ;
Lee, Young Kyung ;
Ko, Hongseok ;
Kim, Ki Hwan ;
Park, Chang Min ;
Kim, Yun Hyeon .
KOREAN JOURNAL OF RADIOLOGY, 2020, 21 (04) :494-500
[60]  
Zokaeinikoo M., 2020, [No title captured], DOI DOI 10.1101/2020.05.24.20111922.2020.05.24.20111922