Determination of optimal graft lengths for posterior cruciate ligament reconstruction - A theoretical analysis

被引:11
作者
Li, G
DeFrate, L
Suggs, J
Gill, T
机构
[1] BIDMC, MGH, Orthopaed Biomech Lab, Boston, MA 02214 USA
[2] Harvard Univ, Sch Med, Boston, MA 02214 USA
[3] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[4] BIDMC, MGH, Orthopaed Biomech Lab, Boston, MA 02215 USA
[5] Harvard Univ, Sch Med, Boston, MA 02215 USA
来源
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME | 2003年 / 125卷 / 02期
关键词
D O I
10.1115/1.1554409
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Various graft materials have been used in posterior cruciate ligament (PCL) reconstruction. However it is unclear if these grafts can reproduce the structural behavior of the PCL. This paper analyzed the effect of graft length on the structural behavior of the graft using a minimal deformation energy method. An analytical solution was obtained to determine the optimal effective graft length that can best reproduce the structural behavior of the PCL. This optimal graft length was determined as a function of the axial rigidity of the graft. Two typical grafts, bone-patella tendon-bone (BPTB) and Achilles tendon, were analyzed. The data demonstrated that in order to reproduce the PCL behavior the effective length of a BPTB graft (10 nun width) should be 34 mm, while the Achilles tendon graft (with a cross sectional area of 55 nun 2) needs to be 48 nun in length. Longer grafts result in less resistance and shorter graft increased the graft resistance. An initial graft tension cannot help recreate the overall structural behavior of the PCL. These results suggest that graft length is an important surgical variable in PCL reconstruction. An optimal reconstruction of the PCL should reproduce the structural properties of the PCL by using a graft with an optimal length.
引用
收藏
页码:295 / 299
页数:5
相关论文
共 33 条
[1]   Clinical outcome of arthroscopic repair of the posterior cruciate ligament [J].
Becker, R ;
Röpke, M ;
Nebelung, W .
UNFALLCHIRURG, 1999, 102 (05) :354-358
[2]   A biomechanical comparison of posterior cruciate ligament reconstruction techniques [J].
Bergfeld, JA ;
McAllister, DR ;
Parker, RD ;
Valdevit, ADC ;
Kambic, HE .
AMERICAN JOURNAL OF SPORTS MEDICINE, 2001, 29 (02) :129-136
[3]   Evaluation of knee joint laxity and the structural properties of the anterior cruciate ligament graft in the human - A case report [J].
Beynnon, BD ;
Risberg, MA ;
Tjomsland, O ;
Ekeland, A ;
Fleming, BC ;
Peura, GD ;
Johnson, RJ .
AMERICAN JOURNAL OF SPORTS MEDICINE, 1997, 25 (02) :203-206
[4]   ARTICULAR CONTACT IN A 3-DIMENSIONAL MODEL OF THE KNEE [J].
BLANKEVOORT, L ;
KUIPER, JH ;
HUISKES, R ;
GROOTENBOER, HJ .
JOURNAL OF BIOMECHANICS, 1991, 24 (11) :1019-1031
[5]   Interference screw fixation strength of a quadrupled hamstring tendon graft is directly related to bone mineral density and insertion torque [J].
Brand, JC ;
Pienkowski, D ;
Steenlage, E ;
Hamilton, D ;
Johnson, DL ;
Caborn, DNM .
AMERICAN JOURNAL OF SPORTS MEDICINE, 2000, 28 (05) :705-710
[6]   Athletics and osteoarthritis [J].
Buckwalter, JA ;
Lane, NE .
AMERICAN JOURNAL OF SPORTS MEDICINE, 1997, 25 (06) :873-881
[7]   THE EFFECT OF FEMORAL TUNNEL POSITION AND GRAFT TENSIONING TECHNIQUE ON POSTERIOR LAXITY OF THE POSTERIOR CRUCIATE LIGAMENT-RECONSTRUCTED KNEE [J].
BURNS, WC ;
DRAGANICH, LF ;
PYEVICH, M ;
REIDER, B .
AMERICAN JOURNAL OF SPORTS MEDICINE, 1995, 23 (04) :424-430
[8]   COMPARISON OF MATERIAL PROPERTIES IN FASCICLE-BONE UNITS FROM HUMAN PATELLAR TENDON AND KNEE LIGAMENTS [J].
BUTLER, DL ;
KAY, MD ;
STOUFFER, DC .
JOURNAL OF BIOMECHANICS, 1986, 19 (06) :425-432
[9]   Double tunnel technique for reconstruction of the posterior cruciate ligament [J].
Clancy, WG ;
Bisson, LJ .
OPERATIVE TECHNIQUES IN SPORTS MEDICINE, 1999, 7 (03) :110-117
[10]   THE STRENGTH OF THE CENTRAL 3RD PATELLAR TENDON GRAFT - A BIOMECHANICAL STUDY [J].
COOPER, DE ;
DENG, XHH ;
BURSTEIN, AL ;
WARREN, RF .
AMERICAN JOURNAL OF SPORTS MEDICINE, 1993, 21 (06) :818-824