Stationary scattering from a nonlinear network

被引:46
作者
Gnutzmann, Sven [1 ]
Smilansky, Uzy [2 ,3 ]
Derevyanko, Stanislav [4 ]
机构
[1] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
[2] Cardiff Univ, Sch Math, Cardiff CF24, S Glam, Wales
[3] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
[4] Aston Univ, Nonlinear & Complex Res Grp, Birmingham B4 7ET, W Midlands, England
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevA.83.033831
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Transmission through a complex network of nonlinear one-dimensional leads is discussed by extending the stationary scattering theory on quantum graphs to the nonlinear regime. We show that the existence of cycles inside the graph leads to a large number of sharp resonances that dominate scattering. The latter resonances are then shown to be extremely sensitive to the nonlinearity and display multistability and hysteresis. This work provides a framework for the study of light propagation in complex optical networks.
引用
收藏
页数:6
相关论文
共 15 条
[1]  
[Anonymous], 2007, NONLINEAR FIBER OPTI
[2]   Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper [J].
Barclay, PE ;
Srinivasan, K ;
Painter, O .
OPTICS EXPRESS, 2005, 13 (03) :801-820
[3]   Stationary solutions of the one-dimensional nonlinear Schrodinger equation. I. Case of repulsive nonlinearity [J].
Carr, LD ;
Clark, CW ;
Reinhardt, WP .
PHYSICAL REVIEW A, 2000, 62 (06) :063610-063611
[4]   Quantum graphs: Applications to quantum chaos and universal spectral statistics [J].
Gnutzmann, Sven ;
Smilansky, Uzy .
ADVANCES IN PHYSICS, 2006, 55 (5-6) :527-625
[5]   Fast soliton scattering by delta impurities [J].
Holmer, Justin ;
Marzuola, Jeremy ;
Zworski, Maciej .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 274 (01) :187-216
[6]   Kirchhoff's rule for quantum wires [J].
Kostrykin, V ;
Schrader, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (04) :595-630
[7]   Chaotic scattering on graphs [J].
Kottos, T ;
Smilansky, U .
PHYSICAL REVIEW LETTERS, 2000, 85 (05) :968-971
[8]   Periodic orbit theory and spectral statistics for quantum graphs [J].
Kottos, T ;
Smilansky, U .
ANNALS OF PHYSICS, 1999, 274 (01) :76-124
[9]   Bose-Einstein beams: Coherent propagation through a guide [J].
Leboeuf, P ;
Pavloff, N .
PHYSICAL REVIEW A, 2001, 64 (03) :17
[10]   Nonlinear transport of Bose-Einstein condensates through waveguides with disorder [J].
Paul, T ;
Leboeuf, P ;
Pavloff, N ;
Richter, K ;
Schlagheck, P .
PHYSICAL REVIEW A, 2005, 72 (06)