ADAPTIVE REFINEMENT STRATEGIES FOR THE SIMULATION OF GAS FLOW IN NETWORKS USING A MODEL HIERARCHY

被引:8
作者
Domschke, Pia [1 ]
Dua, Aseem [2 ]
Stolwijk, Jeroen J. [2 ]
Lang, Jens [1 ,3 ]
Mehrmann, Volker [2 ]
机构
[1] Tech Univ Darmstadt, Dept Math, Dolivostr 15, D-64293 Darmstadt, Germany
[2] TU Berlin, Inst Math, MA 4-5,Str 17 Juni 136, D-10623 Berlin, Germany
[3] Tech Univ Darmstadt, Grad Sch Energy Sci & Engn, Jovanka Bontschits Str 2, D-64287 Darmstadt, Germany
来源
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS | 2018年 / 48卷
关键词
gas supply networks; model hierarchy; error estimators; model adaptivity; refinement strategies; MESH REFINEMENT; OPTIMIZATION; CONVERGENCE; ALGORITHM; ERRORS;
D O I
10.1553/etna_vol48s97
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A model hierarchy that is based on the one-dimensional isothermal Euler equations of fluid dynamics is used for the simulation and optimisation of natural gas flow through a pipeline network. Adaptive refinement strategies have the aim of bringing the simulation error below a prescribed tolerance while keeping the computational costs low. While spatial and temporal stepsize adaptivity is well studied in the literature, model adaptivity is a new field of research. The problem of finding an optimal refinement strategy that combines these three types of adaptivity is a generalisation of the unbounded knapsack problem. A refinement strategy that is currently used in gas flow simulation software is compared to two novel greedy-like strategies. Both a theoretical experiment and a realistic gas flow simulation show that the novel strategies significantly outperform the current refinement strategy with respect to the computational cost incurred.
引用
收藏
页码:97 / 113
页数:17
相关论文
共 39 条
[1]  
ADEWUMI M. A., 1995, 27 ANN M PSIG ALB PS
[2]  
[Anonymous], 2002, Cambridge Texts in Applied Mathematics, DOI [10.1017/CBO9780511791253, DOI 10.1017/CBO9780511791253]
[3]  
[Anonymous], 2004, Knapsack Problems, DOI DOI 10.1007/978-3-540-24777-710
[4]   Coupling conditions for gas networks governed by the isothermal Euler equations [J].
Banda, Mapundi K. ;
Herty, Michael ;
Klar, Axel .
NETWORKS AND HETEROGENEOUS MEDIA, 2006, 1 (02) :295-314
[5]   Gas flow in pipeline networks [J].
Banda, Mapundi K. ;
Herty, Michael ;
Klar, Axel .
NETWORKS AND HETEROGENEOUS MEDIA, 2006, 1 (01) :41-56
[6]  
Becker R, 2001, ACT NUMERIC, V10, P1, DOI 10.1017/S0962492901000010
[7]   3-DIMENSIONAL ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC CONSERVATION-LAWS [J].
BELL, J ;
BERGER, M ;
SALTZMAN, J ;
WELCOME, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (01) :127-138
[8]   AUTOMATIC ADAPTIVE GRID REFINEMENT FOR THE EULER EQUATIONS [J].
BERGER, MJ ;
JAMESON, A .
AIAA JOURNAL, 1985, 23 (04) :561-568
[9]   LOCAL ADAPTIVE MESH REFINEMENT FOR SHOCK HYDRODYNAMICS [J].
BERGER, MJ ;
COLELLA, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 82 (01) :64-84
[10]   ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
BERGER, MJ ;
OLIGER, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 53 (03) :484-512