On a Hele-Shaw Flow Problem with Free and Solid Boundary Components

被引:1
|
作者
Kohr, Mirela [1 ]
Pintea, Cornel [1 ]
机构
[1] Babes Bolyai Univ, Fac Math & Comp Sci, 1 M Kogalniceanu Str, Cluj Napoca 400084, Romania
关键词
Hele-Shaw flow problem; Dirichlet-Neumann boundary value problem; Newtonian and boundary layer potentials; Lipschitz domain; Sobolev spaces; LAPLACE EQUATION; SYSTEMS; REGULARITY; BRINKMAN; STOKES; FLUID;
D O I
10.1007/s11785-017-0719-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this work is to study a one phase Hele-Shaw fluid flow occupying a time variable domain , due to the injection of the fluid with a constant rate at a single point of the initial domain , and in the presence of a fixed solid body . We show the short time existence and uniqueness of the solution for the corresponding boundary value problem in the three dimensional case and in the absence of surface tension.
引用
收藏
页码:1729 / 1746
页数:18
相关论文
共 50 条
  • [31] Hele-Shaw flow with a small obstacle
    Gennady Mishuris
    Sergei Rogosin
    Michal Wrobel
    Meccanica, 2014, 49 : 2037 - 2047
  • [32] MOVING STONE IN THE HELE-SHAW FLOW
    Mishuris, Gennady
    Rogosin, Sergei
    Wrobel, Michal
    MATHEMATIKA, 2015, 61 (02) : 457 - 474
  • [33] A kinetic approximation of Hele-Shaw flow
    Pareschi, L
    Russo, G
    Toscani, G
    COMPTES RENDUS MATHEMATIQUE, 2004, 338 (02) : 177 - 182
  • [34] Thermocapillary flow in a Hele-Shaw cell
    Boos, W
    Thess, A
    JOURNAL OF FLUID MECHANICS, 1997, 352 : 305 - 330
  • [35] AN INVESTIGATION OF FLOW REGIME FOR HELE-SHAW FLOW
    SMITH, RC
    GREENKOR.RA
    SOCIETY OF PETROLEUM ENGINEERS JOURNAL, 1969, 9 (04): : 434 - &
  • [36] Hele-Shaw flow on hyperbolic surfaces
    Hedenmalm, H
    Shimorin, S
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (03): : 187 - 222
  • [37] Time local existence of a moving boundary of the Hele-Shaw flow with suction
    Kimura, M
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 1999, 10 : 581 - 605
  • [38] Evolution of the Perturbation of a Circle in the Stokes–Leibenson Problem for the Hele-Shaw Flow
    A. S. Demidov
    Journal of Mathematical Sciences, 2004, 123 (5) : 4381 - 4403
  • [39] Boundary effects on the onset of miscible viscous fingering in a Hele-Shaw flow
    Kumar, Anoop
    Mishra, Manoranjan
    PHYSICAL REVIEW FLUIDS, 2019, 4 (10)
  • [40] Polygonal Hele-Shaw problem with surface tension
    Kimura, Masato
    Tagami, Daisuke
    Yazaki, Shigetoshi
    INTERFACES AND FREE BOUNDARIES, 2013, 15 (01) : 77 - 93