Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity

被引:285
作者
Pillon, Nicolas J. [1 ]
Gabriel, Brendan M. [1 ]
Dollet, Lucile [1 ]
Smith, Jonathon A. B. [1 ]
Puig, Laura Sardon [1 ]
Botella, Javier [2 ]
Bishop, David J. [3 ]
Krook, Anna [1 ]
Zierath, Juleen R. [1 ,2 ,4 ]
机构
[1] Karolinska Inst, Dept Physiol & Pharmacol, Stockholm, Sweden
[2] Karolinska Inst, Dept Mol Med & Surg, Stockholm, Sweden
[3] Victoria Univ, Inst Hlth & Sport, Melbourne, Vic, Australia
[4] Univ Copenhagen, Novo Nordisk Fdn Ctr Basic Metab Res, Copenhagen, Denmark
基金
瑞典研究理事会; 澳大利亚研究理事会;
关键词
GLOBAL GENE-EXPRESSION; ENDURANCE EXERCISE; NUCLEAR RECEPTOR; INSULIN SENSITIVITY; PHYSICAL INACTIVITY; OXIDATIVE CAPACITY; FIBER-TYPE; 24; H; RESISTANCE; NOR-1;
D O I
10.1038/s41467-019-13869-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The molecular mechanisms underlying the response to exercise and inactivity are not fully understood. We propose an innovative approach to profile the skeletal muscle transcriptome to exercise and inactivity using 66 published datasets. Data collected from human studies of aerobic and resistance exercise, including acute and chronic exercise training, were integrated using meta-analysis methods (www.metamex.eu). Here we use gene ontology and pathway analyses to reveal selective pathways activated by inactivity, aerobic versus resistance and acute versus chronic exercise training. We identify NR4A3 as one of the most exercise- and inactivity-responsive genes, and establish a role for this nuclear receptor in mediating the metabolic responses to exercise-like stimuli in vitro. The meta-analysis (MetaMEx) also highlights the differential response to exercise in individuals with metabolic impairments. MetaMEx provides the most extensive dataset of skeletal muscle transcriptional responses to different modes of exercise and an online interface to readily interrogate the database. The pathways that underlie the effects of exercise on metabolism remain incompletely described. Here, the authors perform a meta-analysis of transcriptomic data from 66 published datasets of human skeletal muscle. They identify pathways selectively activated by inactivity, aerobic or resistance exercise, and characterize NR4A3 as one of the genes responsive to inactivity.
引用
收藏
页数:15
相关论文
共 94 条
[51]   Resistance Exercise Reverses Aging in Human Skeletal Muscle [J].
Melov, Simon ;
Tarnopolsky, Mark A. ;
Beckman, Kenneth ;
Felkey, Krysta ;
Hubbard, Alan .
PLOS ONE, 2007, 2 (05)
[52]   Gene expression profile of muscle adaptation to high-intensity intermittent exercise training in young men [J].
Miyamoto-Mikami, Eri ;
Tsuji, Katsunori ;
Horii, Naoki ;
Hasegawa, Natsuki ;
Fujie, Shumpei ;
Homma, Toshiyuki ;
Uchida, Masataka ;
Hamaoka, Takafumi ;
Kanehisa, Hiroaki ;
Tabata, Izumi ;
Iemitsu, Motoyuki .
SCIENTIFIC REPORTS, 2018, 8
[53]   Transient transcriptional events in human skeletal muscle at the outset of concentric resistance exercise training [J].
Murton, A. J. ;
Billeter, R. ;
Stephens, F. B. ;
Des Etages, S. G. ;
Graber, F. ;
Hill, R. J. ;
Marimuthu, K. ;
Greenhaff, P. L. .
JOURNAL OF APPLIED PHYSIOLOGY, 2014, 116 (01) :113-125
[54]   Transcriptome analysis of neutrophils after endurance exercise reveals novel signaling mechanisms in the immune response to physiological stress [J].
Neubauer, Oliver ;
Sabapathy, Surendran ;
Lazarus, Ross ;
Jowett, Jeremy B. M. ;
Desbrow, Ben ;
Peake, Jonathan M. ;
Cameron-Smith, David ;
Haseler, Luke J. ;
Wagner, Karl-Heinz ;
Bulmer, Andrew C. .
JOURNAL OF APPLIED PHYSIOLOGY, 2013, 114 (12) :1677-1688
[55]   Understanding the Cellular and Molecular Mechanisms of Physical Activity-Induced Health Benefits [J].
Neufer, P. Darrell ;
Bamman, Marcas M. ;
Muoio, Deborah M. ;
Bouchard, Claude ;
Cooper, Dan M. ;
Goodpaster, Bret H. ;
Booth, Frank W. ;
Kohrt, Wendy M. ;
Gerszten, Robert E. ;
Mattson, Mark P. ;
Hepple, Russell T. ;
Kraus, William E. ;
Reid, Michael B. ;
Bodine, Sue C. ;
Jakicic, John M. ;
Fleg, Jerome L. ;
Williams, John P. ;
Joseph, Lyndon ;
Evans, Mary ;
Maruvada, Padma ;
Rodgers, Mary ;
Roary, Mary ;
Boyce, Amanda T. ;
Drugan, Jonelle K. ;
Koenig, James I. ;
Ingraham, Richard H. ;
Krotoski, Danuta ;
Garcia-Cazarin, Mary ;
McGowan, Joan A. ;
Laughlin, Maren R. .
CELL METABOLISM, 2015, 22 (01) :4-11
[56]   Electrical pulse stimulation of cultured skeletal muscle cells as a model for in vitro exercise - possibilities and limitations [J].
Nikolic, N. ;
Goergens, S. W. ;
Thoresen, G. H. ;
Aas, V. ;
Eckel, J. ;
Eckardt, K. .
ACTA PHYSIOLOGICA, 2017, 220 (03) :310-331
[57]   Changes in Gene Expression in Responders and Nonresponders to a Low-Intensity Walking Intervention [J].
Osler, Megan E. ;
Fritz, Tomas ;
Caidahl, Kenneth ;
Krook, Anna ;
Zierath, Juleen R. ;
Wallberg-Henriksson, Harriet .
DIABETES CARE, 2015, 38 (06) :1154-1160
[58]   Muscle Contraction Induces Acute Hydroxymethylation of the Exercise-Responsive Gene Nr4a3 [J].
Pattamaprapanont, Pattarawan ;
Garde, Christian ;
Fabre, Odile ;
Barres, Romain .
FRONTIERS IN ENDOCRINOLOGY, 2016, 7
[59]   Muscle damage and inflammation during recovery from exercise [J].
Peake, Jonathan M. ;
Neubauer, Oliver ;
Della Gatta, Paul A. ;
Nosaka, Kazunori .
JOURNAL OF APPLIED PHYSIOLOGY, 2017, 122 (03) :559-570
[60]   The orphan nuclear receptor, NOR-1, is a target of β-adrenergic signaling in skeletal muscle [J].
Pearen, Michael A. ;
Ryall, James G. ;
Maxwell, Megan A. ;
Ohkura, Naganari ;
Lynch, Gordon S. ;
Muscat, George E. O. .
ENDOCRINOLOGY, 2006, 147 (11) :5217-5227