Statistical estimation of femur micro-architecture using optimal shape and density predictors

被引:13
作者
Lekadir, Karim [1 ]
Hazrati-Marangalou, Javad [2 ]
Hoogendoorn, Corne [1 ]
Taylor, Zeike [3 ]
van Rietbergen, Bert [2 ]
Frangi, Alejandro F. [3 ]
机构
[1] Univ Pompeu Fabra, Ctr Computat Imaging & Simulat Technol Biomed, Dept Informat & Commun Technol, Barcelona, Spain
[2] Eindhoven Univ Technol, Dept Biomed Engn, Orthopaed Biomech, NL-5600 MB Eindhoven, Netherlands
[3] Univ Sheffield, Dept Mech Engn, Ctr Computat Imaging & Simulat Technol Biomed, Sheffield, S Yorkshire, England
关键词
Femur micro-architecture; Trabecular anisotropy; Fabric tensors; Micro-CT; Statistical predictive modeling; Bone shape and density; PROXIMAL FEMUR; BONE; ANISOTROPY; IMAGES;
D O I
10.1016/j.jbiomech.2015.01.002
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The personalization of trabecular micro-architecture has been recently shown to be important in patient-specific biomechanical models of the femur. However, high-resolution in vivo imaging of bone micro-architecture using existing modalities is still infeasible in practice due to the associated acquisition times, costs, and X-ray radiation exposure. In this study, we describe a statistical approach for the prediction of the femur micro-architecture based on the more easily extracted subject-specific bone shape and mineral density information. To this end, a training sample of ex vivo micro-CT images is used to learn the existing statistical relationships within the low and high resolution image data. More specifically, optimal bone shape and mineral density features are selected based on their predictive power and used within a partial least square regression model to estimate the unknown trabecular micro-architecture within the anatomical models of new subjects. The experimental results demonstrate the accuracy of the proposed approach, with average errors of 0.07 for both the degree of anisotropy and tensor norms. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:598 / 603
页数:6
相关论文
共 23 条
  • [1] Abdi H, 2003, ENCYCL RES METHODS S, V6, P792
  • [2] Log-euclidean metrics for fast and simple calculus on diffusion tensors
    Arsigny, Vincent
    Fillard, Pierre
    Pennec, Xavier
    Ayache, Nicholas
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2006, 56 (02) : 411 - 421
  • [3] Micro architecture, the key to bone quality
    Brandi, Maria Luisa
    [J]. RHEUMATOLOGY, 2009, 48 : IV3 - IV8
  • [4] Bone microarchitecture as an important determinant of bone strength
    Carbonare, LD
    Giannini, S
    [J]. JOURNAL OF ENDOCRINOLOGICAL INVESTIGATION, 2004, 27 (01) : 99 - 105
  • [5] Mapping anisotropy of the proximal femur for enhanced image based finite element analysis
    Enns-Bray, William S.
    Owoc, Jan S.
    Nishiyama, Kyle K.
    Boyd, Steven K.
    [J]. JOURNAL OF BIOMECHANICS, 2014, 47 (13) : 3272 - 3278
  • [6] PROCRUSTES METHODS IN THE STATISTICAL-ANALYSIS OF SHAPE
    GOODALL, C
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1991, 53 (02): : 285 - 339
  • [7] Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur
    Grassi, Lorenzo
    Hraiech, Najah
    Schileo, Enrico
    Ansaloni, Mauro
    Rochette, Michel
    Viceconti, Marco
    [J]. MEDICAL ENGINEERING & PHYSICS, 2011, 33 (01) : 112 - 120
  • [8] Guyon Isabelle, 2003, Journal of Machine Learning, V3, P1157
  • [9] CHARACTERIZATION OF MICROSTRUCTURAL ANISOTROPY IN ORTHOTROPIC MATERIALS USING A 2ND RANK TENSOR
    HARRIGAN, TP
    MANN, RW
    [J]. JOURNAL OF MATERIALS SCIENCE, 1984, 19 (03) : 761 - 767
  • [10] Hazrati-Marangalou Javad, 2013, DATABASE FEMUR SAMPL