CRISPR-Cas9 Based Bacteriophage Genome Editing

被引:11
作者
Zhang, Xueli [1 ]
Zhang, Chaohui [1 ]
Liang, Caijiao [1 ]
Li, Bizhou [1 ]
Meng, Fanmei [1 ]
Ai, Yuncan [1 ]
机构
[1] Sun Yat Sen Univ, Sch Life Sci, State Key Lab Biocontrol, Guangzho, Peoples R China
来源
MICROBIOLOGY SPECTRUM | 2022年 / 10卷 / 04期
关键词
bacteriophages; CRISPR-Cas9; genome editing; genome engineering; EVOLUTIONARY CLASSIFICATION; RNA MATURATION; CAS; PHAGES; HOST; ABUNDANCE; VIRUSES; SYSTEMS; ACQUISITION; LAMBDA;
D O I
10.1128/spectrum.00820-22
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Bacteriophages are the most abundant entities in the biosphere, and many genomes of rare and novel bacteriophages have been sequenced to date. However, bacteriophage functional genomics has been limited by a lack of effective research methods. Clustered regularly interspaced short palindromic repeat/CRISPR-associated gene (CRISPRCas) systems provide bacteriophages with a new mechanism for attacking host bacteria as well as new tools for study bacteriophage functional genomics. It has been reported that bacteriophages are not only the driving elements of the evolution of prokaryote CRISPR arrays but also the targets of CRISPR-Cas systems. In this study, a phage genome editing platform based on the heterologous CRISPR-Cas9 system was theoretically designed, and a Vibrio natriegens phage TT4P2 genome editing experiment was carried out in vivo in the host bacterium Vibrio natriegens TT4 to achieve phage gene deletion and replacement. The construction of this phage genome editing platform is expected to solve the problem of insufficient research on phage gene diversity, promote the development of phage synthetic biology and nanotechnology, and even accelerate the discovery of new molecular biology tools. IMPORTANCE Bacteriophages are the most numerous organisms on earth and are known for their diverse lifestyles. Since the discovery of bacteriophages, our knowledge of the wider biological world has undergone immense and unforeseen changes. A variety of V. natriegens phages have been detected, but few have been well characterized. CRISPR was first documented in Escherichia coli in 1987. It has been reported that the CRISPR-Cas system can target and cleave invaders, including bacteriophages, in a sequence-specific manner. Here, we show that the construction of a phage genome editing platform based on the heterologous CRISPR-Cas9 system can achieve V. natriegens phage TT4P2 gene editing and can also improve the efficiency and accuracy of phage TT4P2 gene editing.
引用
收藏
页数:12
相关论文
共 57 条
  • [1] C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector
    Abudayyeh, Omar O.
    Gootenberg, Jonathan S.
    Konermann, Silvana
    Joung, Julia
    Slaymaker, Ian M.
    Cox, David B. T.
    Shmakov, Sergey
    Makarova, Kira S.
    Semenova, Ekaterina
    Minakhin, Leonid
    Severinov, Konstantin
    Regev, Aviv
    Lander, Eric S.
    Koonin, Eugene V.
    Zhang, Feng
    [J]. SCIENCE, 2016, 353 (6299)
  • [2] Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease
    Anders, Carolin
    Niewoehner, Ole
    Duerst, Alessia
    Jinek, Martin
    [J]. NATURE, 2014, 513 (7519) : 569 - +
  • [3] Engineering Modular Viral Scaffolds for Targeted Bacterial Population Editing
    Ando, Hiroki
    Lemire, Sebastien
    Pires, Diana P.
    Lu, Timothy K.
    [J]. CELL SYSTEMS, 2015, 1 (03) : 187 - 196
  • [4] Strategies for Editing Virulent Staphylococcal Phages Using CRISPR-Cas10
    Bari, S. M. Nayeemul
    Walker, Forrest C.
    Cater, Katie
    Aslan, Barbaros
    Hatoum-Aslan, Asma
    [J]. ACS SYNTHETIC BIOLOGY, 2017, 6 (12): : 2316 - 2325
  • [5] CRISPR provides acquired resistance against viruses in prokaryotes
    Barrangou, Rodolphe
    Fremaux, Christophe
    Deveau, Helene
    Richards, Melissa
    Boyaval, Patrick
    Moineau, Sylvain
    Romero, Dennis A.
    Horvath, Philippe
    [J]. SCIENCE, 2007, 315 (5819) : 1709 - 1712
  • [6] HIGH ABUNDANCE OF VIRUSES FOUND IN AQUATIC ENVIRONMENTS
    BERGH, O
    BORSHEIM, KY
    BRATBAK, G
    HELDAL, M
    [J]. NATURE, 1989, 340 (6233) : 467 - 468
  • [7] Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials
    Bikard, David
    Euler, Chad W.
    Jiang, Wenyan
    Nussenzweig, Philip M.
    Goldberg, Gregory W.
    Duportet, Xavier
    Fischetti, Vincent A.
    Marraffini, Luciano A.
    [J]. NATURE BIOTECHNOLOGY, 2014, 32 (11) : 1146 - 1150
  • [8] Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system
    Bondy-Denomy, Joe
    Pawluk, April
    Maxwell, Karen L.
    Davidson, Alan R.
    [J]. NATURE, 2013, 493 (7432) : 429 - U181
  • [9] Functional Analysis of Bacteriophage Immunity through a Type I-E CRISPR-Cas System in Vibrio cholerae and Its Application in Bacteriophage Genome Engineering
    Box, Allison M.
    McGuffie, Matthew J.
    O'Hara, Brendan J.
    Seed, Kimberley D.
    [J]. JOURNAL OF BACTERIOLOGY, 2016, 198 (03) : 578 - 590
  • [10] Small CRISPR RNAs guide antiviral defense in prokaryotes
    Brouns, Stan J. J.
    Jore, Matthijs M.
    Lundgren, Magnus
    Westra, Edze R.
    Slijkhuis, Rik J. H.
    Snijders, Ambrosius P. L.
    Dickman, Mark J.
    Makarova, Kira S.
    Koonin, Eugene V.
    van der Oost, John
    [J]. SCIENCE, 2008, 321 (5891) : 960 - 964