Cogeneration of H2O2 and •OH via a novel Fe3O4/MWCNTs composite cathode in a dual-compartment electro-Fenton membrane reactor

被引:59
|
作者
Cui, Lele [1 ]
Huang, Huihui [1 ]
Ding, Peipei [1 ]
Zhu, Shenjie [1 ]
Jing, Wenheng [1 ]
Gu, Xuehong [1 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, Natl Engn Res Ctr Special Separat Membrane, State Key Lab Mat Oriented Chem Engn, Nanjing 210009, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetite; Heterogeneous electro-Fenton; Gas diffusion electrode; Dual-compartment reactor; HETEROGENEOUS FENTON; WASTE-WATER; CARBON NANOTUBES; DEGRADATION; OXIDATION; CATALYST; EFFICIENT; MINERALIZATION; FERRITE; SYSTEM;
D O I
10.1016/j.seppur.2019.116380
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A dual-compartment electro-Fenton (EF) membrane reactor coupled with a high-catalytic efficiency gas diffusion electrode (GDE) was developed, which can simultaneously produce H2O2 and (OH)-O-center dot in situ without any addition of chemicals. The magnetite/multiwalled carbon nanotubes (Fe3O4/MWCNTs) nanocomposites were synthesized by a facile one-step solvothermal reduction method and then mixed with carbon black (CB) and polytetra-fluoroethylene (PTFE) to construct a novel GDE. On the gas-liquid-solid interface of the electrode, H2O2 was produced through oxygen reduction reaction due to the presence of CB. Further, (OH)-O-center dot was generated by heterogeneous Fenton reaction of H2O2 with the active site of equivalent to Fe(II) on the surface of Fe3O4/MWCNTs. Taking advantage of the high-speed charge channel of MWCNTs, the redox cycling between equivalent to Fe(II) and equivalent to Fe(III) could be accelerated; thus, the Fe3O4/MWCNTs-based cathode exhibited a methyl orange (MO) degradation efficiency that was 1.4 times higher than that of Fe3O4. More importantly, a high removal efficiency of 90.3% at pH = 3 and of 52.6% under neutral conditions could be obtained (working conditions C-MO = 50 mg/L, I = 80 mA and F-O2 = 10 mL/min). These results demonstrated the potential of the Fe3O4/MWCNTs composite cathode for the treatment of wastewater by the heterogeneous EF process over a wide applicable pH range.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Integrated electro-Fenton process enabled by a rotating Fe3O4/gas diffusion cathode for simultaneous generation and activation of H2O2
    Zhang, Yan
    Gao, Mingming
    Wang, Shu-Guang
    Zhou, Weizhi
    Sang, Yuanhua
    Wang, Xin-Hua
    ELECTROCHIMICA ACTA, 2017, 231 : 694 - 704
  • [2] A novel bifunctional cathode for the generation and activation of H2O2 in electro-Fenton: Characteristics and mechanism
    Xie, Fangshu
    Gao, Ying
    Zhang, Jingbin
    Bai, Huiling
    Zhang, Jianfeng
    Li, Zhihua
    Zhu, Weihuang
    ELECTROCHIMICA ACTA, 2022, 430
  • [3] A dual-cathode pulsed current electro-Fenton system: Improvement for H2O2 accumulation and Fe3+ reduction
    Deng, Fengxia
    Li, Sixing
    Cao, Yulin
    Fang, M. A.
    Qu, Jianhua
    Chen, Zhonglin
    Qiu, Shan
    JOURNAL OF POWER SOURCES, 2020, 466 (466)
  • [4] A Novel Electro-Fenton Process with H2O2 Generation in a Rotating Disk Reactor for Organic Pollutant Degradation
    Yu, Fangke
    Zhou, Minghua
    Zhou, Lei
    Peng, Rudan
    ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, 2014, 1 (07): : 320 - 324
  • [5] An integrated catalyst of Pd supported on magnetic Fe3O4 nanoparticles: Simultaneous production of H2O2 and Fe2+ for efficient electro-Fenton degradation of organic contaminants
    Luo, Mingsen
    Yuan, Songhu
    Tong, Man
    Liao, Peng
    Xie, Wenjing
    Xu, Xiaofeng
    WATER RESEARCH, 2014, 48 : 190 - 199
  • [6] Fabrication of novel Fe2O3/MXene cathode for heterogeneous electro-Fenton degradation of sulfamethoxazole
    Liu, Huilai
    Cui, Minshu
    Liu, Yao
    Kong, Defeng
    Li, Zhihao
    Weerasooriya, Rohan
    Chen, Xing
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2023, 125 : 360 - 369
  • [7] Electrogeneration of H2O2 using a porous hydrophobic acetylene black cathode for electro-Fenton process
    Li, Linchao
    Hu, Huili
    Teng, Xiangguo
    Yu, Yuanchun
    Zhu, Yongming
    Su, Xiaoqiang
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2018, 133 : 34 - 39
  • [8] Innovative Dual-Compartment Flow Reactor Coupled with a Gas Diffusion Electrode for in Situ Generation of H2O2
    Ding, Peipei
    Cui, Lele
    Li, Dan
    Jing, Wenheng
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (16) : 6925 - 6932
  • [9] Mineralization of cyanides via a novel Electro-Fenton system generating •OH and •O2-
    Tian, Lei
    Chen, Peng
    Jiang, Xun-Heng
    Chen, Li-Sha
    Tong, Lin-Lin
    Yang, Hong-Ying
    Fan, Jie-Ping
    Wu, Dai-She
    Zou, Jian-Ping
    Luo, Sheng-Lian
    WATER RESEARCH, 2022, 209
  • [10] Sustainable H2O2 production in a floating dual-cathode electro-Fenton system for efficient decontamination of organic pollutants
    Wang Z.
    Wang C.
    Wu X.
    Oh W.-D.
    Huang M.
    Zhou T.
    Chemosphere, 2024, 362