SINGV-DA: A data assimilation system for convective-scale numerical weather prediction over Singapore

被引:17
作者
Heng, B. C. Peter [1 ]
Tubbs, Robert [2 ]
Huang, Xiang-Yu [1 ]
Macpherson, Bruce [2 ]
Barker, Dale M. [2 ]
Boyd, Douglas F. A. [2 ]
Kelly, Graeme [2 ]
North, Rachel [2 ]
Stewart, Laura [2 ]
Webster, Stuart [2 ]
Wlasak, Marek [2 ]
机构
[1] Meteorol Serv Singapore, Ctr Climate Res Singapore, Singapore, Singapore
[2] Met Off, Exeter, Devon, England
关键词
background error covariances; convective-scale; data assimilation; numerical weather prediction; observations; Singapore; ERROR COVARIANCE STATISTICS; FORECAST; IMPACT; MODEL; SENSITIVITY;
D O I
10.1002/qj.3774
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
SINGV-DA is a convective-scale numerical weather prediction system with regional data assimilation for Singapore and the surrounding region. This article documents SINGV-DA's current operational configuration and the sensitivity studies that influenced its development. We show that background error covariances derived by bootstrapping (via the lagged National Meteorological Centre method) contain spurious vertical structures at higher model levels that may degrade forecast performance. We found that SINGV-DA precipitation forecasts are sensitive to horizontal resolution and lateral boundary conditions. Our observing system experiments reveal that satellite radiance assimilation, while clearly beneficial for precipitation forecasts in this region, adversely affected model background temperatures and winds at higher altitudes. Benchmarked against the forecast model in isolation, the regional DA system adds significant value to precipitation forecasts in the nowcasting range, but not at longer lead times. Our findings point to the need for further research and development to improve the system.
引用
收藏
页码:1923 / 1938
页数:16
相关论文
共 33 条
[1]  
[Anonymous], WEATH SING
[2]   A review of forecast error covariance statistics in atmospheric variational data assimilation. II: Modelling the forecast error covariance statistics [J].
Bannister, R. N. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2008, 134 (637) :1971-1996
[3]   A review of forecast error covariance statistics in atmospheric variational data assimilation. I: Characteristics and measurements of forecast error covariances [J].
Bannister, R. N. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2008, 134 (637) :1951-1970
[4]   A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh [J].
Benjamin, Stanley G. ;
Weygandt, Stephen S. ;
Brown, John M. ;
Hu, Ming ;
Alexander, Curtis R. ;
Smirnova, Tatiana G. ;
Olson, Joseph B. ;
James, Eric P. ;
Dowell, David C. ;
Grell, Georg A. ;
Lin, Haidao ;
Peckham, Steven E. ;
Smith, Tracy Lorraine ;
Moninger, William R. ;
Kenyon, Jaymes S. ;
Manikin, Geoffrey S. .
MONTHLY WEATHER REVIEW, 2016, 144 (04) :1669-1694
[5]   Observing-system experiments in the ECMWF 4D-Var data assimilation system [J].
Bouttier, F ;
Kelly, G .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2001, 127 (574) :1469-1488
[6]   A posteriori diagnostics of the impact of observations on the AROME-France convective-scale data assimilation system [J].
Brousseau, Pierre ;
Desroziers, Gerald ;
Bouttier, Francois ;
Chapnik, Bernard .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2014, 140 (680) :982-994
[7]   Background-error covariances for a convective-scale data-assimilation system: AROME-France 3D-Var [J].
Brousseau, Pierre ;
Berre, Loik ;
Bouttier, Francois ;
Desroziers, Gerald .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (655) :409-422
[8]  
Cameron J., 2015, 37 MET OFF, V37
[9]   Assimilating vortex position with an ensemble Kalman filter [J].
Chen, Yongsheng ;
Snyder, Chris .
MONTHLY WEATHER REVIEW, 2007, 135 (05) :1828-1845
[10]  
Dipankar A., 2020, SINGV CONVECTIVE SCA