Dominant pseudocapacitive lithium storage in the carbon-coated ferric oxide nanoparticles (Fe2O3@C) towards anode materials for lithium-ion batteries

被引:47
作者
Zhang, Zhongyuan [1 ]
Liang, Jingshuang [1 ]
Zhang, Xue [1 ]
Yang, Wenfei [1 ]
Dong, Xinglong [1 ]
Jung, Youngguan [2 ]
机构
[1] Dalian Univ Technol, Sch Mat Sci & Engn, Key Lab Mat Modificat Laser Ion & Electron Beams, Minist Educ, Dalian 116023, Peoples R China
[2] Kumoh Natl Inst Technol, Dept Mech Engn, Daeharkro 53, Gumi 730701, Gyeong Buk, South Korea
基金
中国国家自然科学基金;
关键词
DC arc plasma; Ferric oxide; Carbon shell; Pseudo-capacitive; Anode; Lithium-ion batteries (LIBs); HIGH-PERFORMANCE ANODE; ENHANCED LITHIUM; ELECTROCHEMICAL PERFORMANCE; 3-DIMENSIONAL GRAPHENE; FE3O4; NANOPARTICLES; HOLLOW SPHERES; GAS SENSOR; ALPHA-FE2O3; COMPOSITES; SHELL;
D O I
10.1016/j.ijhydene.2020.01.151
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A facile strategy of arc plasma followed by an annealing treatment was developed to fabricate the carbon-coated ferric oxide nanoparticles (Fe2O3@C) as the anode materials for LIBs. In the arc-discharge process, higher enthalpy of the plasma was realized by existence of active hydrogen atoms, which can greatly promote the evaporation of raw Fe2O3/solid graphite powers and give rise to the highly graphitized carbon shells. It is indicated that the core/shell nanostructure effectively preserves the structural/electrical integrity leading to the excellent cycling stability. Unlike the carbon coatings formed by wet chemical routes, such carbon layers feature dominant pseudo-capacitive behavior, stronger electric conductivity and better charge transfer ability, thus harvesting the superior rate capability. Benefiting from the structural advantages, the Fe2O3@C electrode delivers a reversible capacity higher than 500 mA h g(-1) at the current density of 5 A g(-1) after 500 cycles. The mechanisms of structural formation and the electrochemical activities have been revealed in details. The facile synthesis route and good electrochemical performances endow the Fe2O3@C nanoparticles with great potential to meet the requirements on high energy/ power and long lifespan for LIBs. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:8186 / 8197
页数:12
相关论文
共 57 条
[1]   Future high-energy density anode materials from an automotive application perspective [J].
Andre, Dave ;
Hain, Holger ;
Lamp, Peter ;
Maglia, Filippo ;
Stiaszny, Barbara .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (33) :17174-17198
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Carbon-coated Fe2O3 nanocrystals with enhanced lithium storage capability [J].
Chai, Xiaohan ;
Shi, Chunsheng ;
Liu, Enzuo ;
Li, Jiajun ;
Zhao, Naiqin ;
He, Chunnian .
APPLIED SURFACE SCIENCE, 2015, 347 :178-185
[4]   Graphene-Encapsulated Hollow Fe3O4 Nanoparticle Aggregates As a High-Performance Anode Material for Lithium Ion Batteries [J].
Chen, Dongyun ;
Ji, Ge ;
Ma, Yue ;
Lee, Jim Yang ;
Lu, Jianmei .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (08) :3078-3083
[5]   α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications [J].
Chen, J ;
Xu, LN ;
Li, WY ;
Gou, XL .
ADVANCED MATERIALS, 2005, 17 (05) :582-+
[6]   Top-Down Fabrication of α-Fe2O3 Single-Crystal Nanodiscs and Microparticles with Tunable Porosity for Largely Improved Lithium Storage Properties [J].
Chen, Jun Song ;
Zhu, Ting ;
Yang, Xiao Hua ;
Yang, Hua Gui ;
Lou, Xiong Wen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (38) :13162-13164
[7]   Hierarchical MoS2 tubular structures internally wired by carbon nanotubes as a highly stable anode material for lithium-ion batteries [J].
Chen, Yu Ming ;
Yu, Xin Yao ;
Li, Zhen ;
Paik, Ungyu ;
Lou, Xiong Wen .
SCIENCE ADVANCES, 2016, 2 (07)
[8]   γ-Fe2O3 nanoparticles embedded in porous carbon fibers as binder-free anodes for high-performance lithium and sodium ion batteries [J].
Chen, Yujie ;
Yuan, Xietao ;
Yang, Cheng ;
Lian, Yuebin ;
Razzaq, Amir Abdul ;
Shah, Rahim ;
Guo, Jun ;
Zhao, Xiaohui ;
Peng, Yang ;
Deng, Zhao .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 777 :127-134
[9]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[10]   Solvent-assisted molten salt process: A new route to synthesise α-Fe2O3/C nanocomposite and its electrochemical performance in lithium-ion batteries [J].
Hassan, Mohd Faiz ;
Rahman, M. M. ;
Guo, Zai Ping ;
Chen, Zhi Xin ;
Liu, Hua Kun .
ELECTROCHIMICA ACTA, 2010, 55 (17) :5006-5013